[1]仓大健,吴选忠,李占福.基于R-Y通道冗余去除钢筋层阴影方法[J].福建工程学院学报,2022,20(04):391-396.[doi:10.3969/j.issn.1672-4348.2022.04.014]
 CANG Dajian,WU Xuanzhong,LI Zhanfu.Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal[J].Journal of FuJian University of Technology,2022,20(04):391-396.[doi:10.3969/j.issn.1672-4348.2022.04.014]
点击复制

基于R-Y通道冗余去除钢筋层阴影方法()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年04期
页码:
391-396
栏目:
出版日期:
2022-08-25

文章信息/Info

Title:
Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal
作者:
仓大健吴选忠李占福
福建工程学院机械与汽车工程学院
Author(s):
CANG Dajian WU Xuanzhong LI Zhanfu
School of Mechanical and Automotive Engineering, Fujian University of Engineering
关键词:
钢筋阴影冗余去除机器视觉通道组合
Keywords:
rebar shadow redundancy removal machine vision channel combination
分类号:
TP751.1
DOI:
10.3969/j.issn.1672-4348.2022.04.014
文献标志码:
A
摘要:
将RGB 颜色空间下的图像转到YUV 颜色空间,分离出R、Y 两个通道,利用图像在R、Y 两个通道内的阴影区域灰度值接近且钢筋区域亮度差距明显的特性,提出一种基于R-Y 通道冗余去除的算法,以消除阴影。 对比几种常用的阴影消除方法,该方法可以较好地实现在工厂环境下钢筋层空间重影去除。
Abstract:
The image in the RGB color space was transferred to the YUV color space, the R and Y channels were separated. Taking advantage of the characteristics that the gray values of the shadow areas of the image in the R and Y channels are close, and the brightness shows an obvious difference in the reinforcement area, an algorithm based on R-Y channel redundancy removal is proposed to eliminate shadows. Compared with several commonly used shadow removal methods, this method can better achieve the spatial ghost removal of rebar layers in the factory environment.

参考文献/References:

[1] KANG C, WU C M, FAN J L. Entropy-based circular histogram thresholding for color image segmentation[J]. Signal, Image and Video Processing, 2021, 15(1):129-138.[2] 张智豪,范九伦. 基于S分量指数加权H分量的圆形直方图阈值法[J/OL].计算机工程, 2021-12-20. https://doi.org/10.19678/j.issn.1000-3428.0062899.[3] 张华南, 冯全, 杨梅, 等. 基于YCbCr颜色空间的叶片阴影检测与去除[J]. 计算机系统应用, 2015, 24(11):262-265.[4] CUCCHIARA R, GRANA C, PICCARDI M, et al. Improving shadow suppression in moving object detection with HSV color information[C]//ITSC 2001.2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585). Oakland, CA, USA: IEEE, 2001:334-339.[5] SUN B Y, LI S T. Moving cast shadow detection of vehicle using combined color models[C]//2010 Chinese Conference on Pattern Recognition (CCPR). Chongqing, China: IEEE, 2010:1-5.[6] 杨俊, 赵忠明. 基于归一化RGB色彩模型的阴影处理方法[J]. 光电工程, 2007, 34(12):92-96.[7] 孙承琦. 基于视觉的机器人环境感知系统研究[D]. 天津:中国民用航空学院, 2005.[8] 岳有军, 赵文佳, 赵辉, 等. 基于多颜色通道组合的UVI空间农作物阴影去除方法[J]. 江苏农业科学, 2017, 45(6):196-200.[9] 李连胜, 陈晚华. 基于MATLAB的数字图像质量评价[J]. 湖南科技学院学报, 2005, 26(5):176-177.[10] 张雯柏, 赵华北, 胡爱云, 等. 峰值信噪比标准下轨道图像预处理方法研究[J]. 湖南文理学院学报(自然科学版), 2019, 31(3):7-12, 18.[11] 李镇锋, 陈晓荣, 陈梦华, 等. 基于图像熵和傅里叶变换的复杂背景分割[J]. 软件工程, 2021, 24(11):19-23.[12] 杨佳攀. 基于粒子群算法的最大熵多阈值图像分割方法研究[D]. 新乡:河南师范大学, 2020.[13] 颜世利. 灰度图像阈值分割的自适应滤波和快速算法研究[D]. 桂林:桂林理工大学, 2018.

更新日期/Last Update: 2022-08-25