[1]李建兴、林华良、俞斌、陈炜、林晨煌、黄诗婷.基于机器视觉的汽车角窗玻璃混线检测算法[J].福建工程学院学报,2021,19(03):223-229.[doi:10.3969/j.issn.1672-4348.2021.03.004]
 LI Jianxing,LIN Hualiang,YU Bin,et al.Machine vision-based non-congeneric product detection algorithm for vehicle quarter glass[J].Journal of FuJian University of Technology,2021,19(03):223-229.[doi:10.3969/j.issn.1672-4348.2021.03.004]
点击复制

基于机器视觉的汽车角窗玻璃混线检测算法()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年03期
页码:
223-229
栏目:
出版日期:
2021-06-25

文章信息/Info

Title:
Machine vision-based non-congeneric product detection algorithm for vehicle quarter glass
作者:
李建兴、林华良、俞斌、陈炜、林晨煌、黄诗婷
福建工程学院电子电气与物理学院
Author(s):
LI Jianxing LIN Hualiang YU Bin CHEN Wei LIN Chenhuang HUANG Shiting
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
机器视觉角窗玻璃混线检测轮廓特征色彩特征
Keywords:
machine vision quarter glass NCPD contour features color features
分类号:
TP391.41; U468
DOI:
10.3969/j.issn.1672-4348.2021.03.004
文献标志码:
A
摘要:
针对汽车玻璃角窗生产线上轮廓、材质与厚度相近似的汽车玻璃容易产生混淆的问题,提出融合轮廓特征与颜色特征的汽车玻璃混线检测算法。通过改进的几何矩匹配算法实现汽车玻璃的轮廓检测;利用色彩特征实现汽车玻璃的材质与厚度的检测,结合轮廓特征与色彩特征实现了汽车玻璃的混线检测。实验证明,提出的混线检测算法有效提高了汽车玻璃混线检测的准确率,有利于提升汽车玻璃检测的自动化水平。
Abstract:
In view of the fact that confusion is easy to occur on the vehicle quarter glass production line due to similarities in their contours, thicknesses and materials, a non-congeneric product detection (NCPD) algorithm was proposed for vehicle quarter glass, which combines contour features and color characteristics. The contour detection of automotive glass was realized by the improved geometric moment matching algorithm. Detection of its material and thickness was realized by using color characteristics. A combination of the contour features and color characteristics can help realize the non-congeneric detection of vehicle glass. Experimental data show that the detection algorithm combining contour features and color characteristics greatly improves the accuracy of vehicle glass NCPD, and improves the automation degree of vehicle glass detection.

相似文献/References:

[1]檀甫贵、邹复民、刘丽桑、李建兴.基于机器视觉的软包锂电池表面缺陷检测[J].福建工程学院学报,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
 TAN Fugui,ZOU Fumin,LIU Lisang,et al.Surface defect detection of soft-pack lithium battery based on machine vision[J].Journal of FuJian University of Technology,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
[2]戴福全、刘路杰.基于视觉引导的机器人抓取分类系统设计[J].福建工程学院学报,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
 DAI Fuquan,LIU Lujie.Design of vision-guided robotic grasping classification system[J].Journal of FuJian University of Technology,2020,18(03):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
[3]李济泽,位威,张凯凯.基于机器视觉的养殖鱼摄食行为识别方法[J].福建工程学院学报,2022,20(04):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
 LI Jize,WEI Wei,ZHANG Kaikai.Recognition method of fish feeding behavior based on machine vision[J].Journal of FuJian University of Technology,2022,20(03):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
[4]仓大健,吴选忠,李占福.基于R-Y通道冗余去除钢筋层阴影方法[J].福建工程学院学报,2022,20(04):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
 CANG Dajian,WU Xuanzhong,LI Zhanfu.Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal[J].Journal of FuJian University of Technology,2022,20(03):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
[5]刘佳鑫,孔令华,郑积仕,等.基于机器视觉的木材径级测量系统设计[J].福建工程学院学报,2022,20(06):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
 LIU Jiaxin,KONG Linghua,ZHENG Jishi,et al.Design of wood diameter classification system based on machine vision[J].Journal of FuJian University of Technology,2022,20(03):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
[6]董世超,陈丙三,连长伟,等.基于机器视觉的烟梗长度测量方法[J].福建工程学院学报,2024,22(01):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
 DONG Shichao,CHEN Bingsan,LIAN Changwei,et al.Measurement method of tobacco stem length based on machine vision[J].Journal of FuJian University of Technology,2024,22(03):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
[7]戴福全,池生烨.金刚石线表面缺陷视觉检测方法[J].福建工程学院学报,2024,22(03):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]
 DAI Fuquan,CHI Shengye.Visual inspection method for surface defects of diamond wire[J].Journal of FuJian University of Technology,2024,22(03):267.[doi:10.3969/j.issn.2097-3853.2024.03.009]

更新日期/Last Update: 2021-06-25