[1]林亚君、陈学军.基于Ostu优化的PCNN电力故障区域提取[J].福建工程学院学报,2020,18(06):593-597.[doi:10.3969/j.issn.1672-4348.2020.06.015]
 LIN Yajun,CHEN Xuejun.Fault zone extraction of electrical equipment by using PCNN based on Otsu optimization[J].Journal of FuJian University of Technology,2020,18(06):593-597.[doi:10.3969/j.issn.1672-4348.2020.06.015]
点击复制

基于Ostu优化的PCNN电力故障区域提取()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年06期
页码:
593-597
栏目:
出版日期:
2020-12-25

文章信息/Info

Title:
Fault zone extraction of electrical equipment by using PCNN based on Otsu optimization
作者:
林亚君、陈学军
莆田学院
Author(s):
LIN Yajun1 2 CHEN Xuejun
School of Electromechanical Engineering,Putian University
关键词:
红外图像大津法脉冲耦合神经网络图像分割电力故障
Keywords:
infrared image Otsu PCNN image segmentation electrical equipment fault
分类号:
TM507;TP391.41
DOI:
10.3969/j.issn.1672-4348.2020.06.015
文献标志码:
A
摘要:
为更好实现红外图像中电力设备故障区域的提取,提出改进PCNN(脉冲耦合神经网络) 的故障区域提取方法。基于Otsu 算法(大津法,又称最大类间差法) 计算红外图像的最优分割阈值,作为PCNN 迭代的初始阈值。以最大类间方差作为PCNN 模型的收敛判据,实现红外图像自动分割以提取电力故障区域。实验表明,该算法与Otsu、K-means、传统PCNN 方法相比,能够更全面、精确地提取电力故障区域,为后续故障类型识别奠定基础。
Abstract:
In order to better realize the extraction of the fault area of power equipment in infrared images, a method for fault area extraction was proposed with improved PCNN (pulse-coupled neural network). Based on Otsu, the optimal segmentation threshold for infrared images was calculated based on Otsu algorithm and it was taken as the initial threshold for PCNN iterations. By using the maximum between-cluster variance as the convergence criterion of the PCNN model, the infrared image was automatically segmented to extract the power fault region. Experimental results show that compared with Otsu, K-means and traditional PCNN methods, this algorithm can extract the power fault area more comprehensively and accurately, and lay the foundation for the identification of subsequent fault types.

参考文献/References:

[1] 张璐, 赵建. 红外成像技术在电力系统后备电源热故障监测中的应用研究[J]. 电测与仪表, 2012, 49(8): 93-96.[2] JADIN M, TAIB S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography[J]. Infrared Physics & Technology, 2012, 55(4): 236-245.[3] 黄靖, 李俊男, 刘丽桑, 等. 基于形态学重建与OTSU的极耳焊缝图像分割方法[J]. 福建工程学院学报, 2019, 17(4): 359-364.[4] 孙怡, 吴邦树, 刘仪卜, 等. 基于红外图像处理的电气设备故障诊断方法[J]. 机电工程技术, 2016, 45(6): 59-62.[5] 熊芬芳. 基于图像处理技术的电气设备故障诊断方法研究[D]. 上海:东华大学,2015:21.[6] HUDA A, TAIB S. Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography[J]. Infrared Physics & Technology, 2013, 61: 184-191.[7] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94.[8] 井金剑, 翟春艳, 李书臣, 等. 基于红外图像识别的电气设备故障诊断[J]. 电子设计工程, 2014, 22(12): 171-173.[9] 沈雯倩, 张莉萍, 黄勃, 等. 改进的K-means红外图像互感器分割方法[J]. 传感器与微系统, 2018, 37(11): 63-65.[10] 谷凯凯, 周东国, 许晓路, 等. 一种基于局部特征的PCNN电力故障区域提取方法[J]. 计算机工程, 2018, 44(7): 291-296.[11] 徐鹏飞, 张菁, 尹腾飞, 等. 基于改进PCNN算法的电力设备图像分割研究[J]. 智能计算机与应用, 2019, 9(3): 59-62, 68. [12] LINDBLAD T, KINSER J. Image processing using pulse-coupled neural networks[M]. Berlin: Springer, 2005: 11-81.[13] CAO J, CHEN L, WANG M, et al. Implementing a parallel image edge detection algorithm based on the Otsu-canny operator on the hadoop platform[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-12.[14] 刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101-105.

更新日期/Last Update: 2020-12-25