[1]朱铨.云平台动态弹性扩展关键技术研究[J].福建工程学院学报,2016,14(01):71-75.[doi:10.3969/j.issn.1672-4348.2016.01.016]
 Zhu Quan.Research on the key technology of dynamic elastic expansion for cloud platform[J].Journal of FuJian University of Technology,2016,14(01):71-75.[doi:10.3969/j.issn.1672-4348.2016.01.016]
点击复制

云平台动态弹性扩展关键技术研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年01期
页码:
71-75
栏目:
出版日期:
2016-02-25

文章信息/Info

Title:
Research on the key technology of dynamic elastic expansion for cloud platform
作者:
朱铨
福建工程学院福建省大数据挖掘与应用技术重点实验室
Author(s):
Zhu Quan
Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujan University of Technology
关键词:
云计算 交通信息化 动态弹性扩展 资源调度
Keywords:
cloud computing traffic informationization dynamic elastic expansion resource scheduling
分类号:
TP393.03
DOI:
10.3969/j.issn.1672-4348.2016.01.016
文献标志码:
A
摘要:
根据实时交通大数据处理的具体需求,提出实时交通大数据处理云平台的逻辑体系结构,分别从IaaS层、中间件层以及应用层探讨实现云平台动态弹性扩展的关键技术以及仍有待解决的关键问题。并搭建实时交通大数据处理云平台的原型系统,提出实时交通大数据处理云平台资源调度策略。实验结果表明云平台的动态弹性扩展特性可满足实时交通大数据处理的性能需求。
Abstract:
A logical architecture for traffic big data real-time processing cloud platform was proposed. The key technology and key issues remain to be solved for the elastic extension mechanism of the IaaS layer, intermediate layer and the application layer were focused. A prototype for the traffic big data realtime processing cloud platform was constructed. The resource scheduling strategy for the cloud platform was presented. The experimental results show that the dynamic elastic extension properties of the cloud platform can meet the performance requirements of traffic big data real-time processing.

参考文献/References:

[1] 邹复民,蒋新华,胡惠淳,等.云计算研究与应用现状综述[J].福建工程学院学报,2013,11(3):231-242.
[2] Zhu Q, Zou F, Deng Y. System architecture and core technologies for transportation internet of things[J]. Intelligent Data Analysis and Applications,2015,370(1):439-448.
[3] 殷波,王颖,孟洛明,等.综合迁移成本和通信成本的云计算节能策略[J].北京邮电大学学报,2012,35(1):68-71.
[4] 申德荣,于戈,王习特,等.支持大数据管理的NoSQL系统研究综述[J].软件学报,2013,24(8):1786-1803.
[5] 李春艳,张学杰.基于高性能计算的开源云平台性能评估[J].计算机应用,2013,33(12):3580-3585.
[6] Liao H, Wu C S, Young H C, et al. A novel mechanism for rapid provisioning virtual machines of cloud services[C]// Proceedings of the 2012 IEEE Network Operations and Management Symposium, NOMS 2012. Maui, HI, United states: IEEE Computer Society, 2012:721-735.
[7] Chanchio K, Thaenkaew P. Timebound, threadbased live migration of virtual machines[C]// 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014. Chicago, IL, United states: IEEE Computer Society, 2014:364-373.
[8] Xu X, Zou F, Zhu Q, et al. Comparison and test for several typical cloud computing platforms[J]. Intelligent Data Analysis and Applications,2015,370(1):427-435.
[9] Soni G, Kalra M. A novel approach for load balancing in cloud data center[C]// 2014 4th IEEE International Advance Computing Conference, IACC 2014. Gurgaon, India: IEEE Computer Society, 2014:807-812.
[10] Dua R, Raja A R, Kakadia D. Virtualization vs containerization to support PaaS[C]// 2nd IEEE International Conference on Cloud Engineering, IC2E 2014. Boston, MA, United states: Institute of Electrical and Electronics Engineers Inc., 2014:610-614.
[11] Boettiger C. An introduction to Docker for reproducible research[J]. ACM SIGOPS Operating Systems Review,2015,49(1):71-79.
[12] 徐翔,邹复民,廖律超,等.基于GemFire的海量数据计算性能实验分析[J].计算机应用,2013,33(1):226-229.

相似文献/References:

[1]赖宏图,朱铨,蒋新华,等.交通物联网的系统架构与技术体系[J].福建工程学院学报,2015,13(01):31.[doi:10.3969/j.issn.1672-4348.2015.01.006]
 Lai Hongtu,Zhe Quan,Jiang Xinhua,et al.The system architecture and technical systems for transportation internet of things (TIOT)[J].Journal of FuJian University of Technology,2015,13(01):31.[doi:10.3969/j.issn.1672-4348.2015.01.006]

更新日期/Last Update: 2016-02-25