参考文献/References:
[1] Connor J W, Hastie R J, Taylor J B. Shear, periodicity, and plasma ballooning modes[J].Physical Review Letters,1978,40:396-399.
[2] Coppi B, Rosenbluth M N. Plasma physics and controlled nuclear fusion research[J].IAEA Culham,1965(1):617-641.
[3] Dobrott D, Nelson D B, Greene J M, et al. Theory of ballooning modes in tokamaks with finite shear[J].Physical Review Letters,1977,39:943-946.
[4] Tang W M, Connor J W,Hastie R J. Kineticballooningmode theory in general geometry[J].Nuclear Fusion,1980,20:1439-1453.
[5] Simakov A, Catto P. Evaluation of the neoclassical radial electric field in a collisional tokamak[J].Physics of Plasmas,2005,12:012105 .
[6] Grandgirard V, Brunetti M, Bertrand P,et al. A drift-kinetic SemiLagrangian 4D code for ion turbulence simulation[J].Journal of Computational Physics,2006,217:395-423 .
[7] Liu Y, Chu M S, Gimblett C G, et al. Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks[J].Physics of Plasmas,2008,15:092505.
[8] Smolyakov A,Garbet X. Drift kinetic equation in the moving reference frame and reduced magnetohydrodynamic equations[J].Physics of Plasmas,2010,17:042105.
[9] Catto P,Tsang K. Linearized gyrokinetic equations with collisions[J].Physics of Fluids,1977,20:396-401.
[10] Peeters A, Strintzi D. The effect of a uniform radial electric field on the toroidal ion temperature gradient mode[J].Physics of Plasmas,2004(11):3748-3751.
[11] Lin Z, Hahm T S, Lee W W, et al. Turbulent transport reduction by zonal flows: Massively parallel simulations[J].Science,1998,281:1835-1837.
[12] Wang W X, Lin Z, Tang W M,et al. Gyrokinetic simulation of global turbulent transport properties in Tokamak experiments[J].Physics of Plasmas,2006(13):092505.
[13] Roberts K V,Taylor J B. Physical magnetohydrodynamic equations for finite larmor radius[J].Review Letters,1962(8):197-198.
[14] Braginskii S. Transport processes in a plasma[J].Reviews of Plasma Physics,1965(1):205-211.
[15] Ruden E. The polarity dependent effect of gyroviscosity on the flow shear stabilized RayleighTaylor instability and an application to the plasma focus[J].Physics of Plasmas,2004(1):713-723.
[16] Scheffel J, Faghihi M. Stability of shortaxialwavelength internal kink modes of an anisotropic plasma[J].Journal of Plasma Physics, 2009, 41: 427-439 .
[17] Qiu X M, Huang L, Jian G D. Finite Larmor radius magnetohydrodynamic analysis of the RayleighTaylor instability in Z pinches with sheared axial flow[J].Physics of Plasmas, 2007(14): 032111.
[18] Jian G D , Huang L, Qiu X M. Assembling Stabilization of the RayleighTaylor Instability by the effects of finite larmor radius and sheared axial flow[J].Plasma Science and Technology,2005(7):2805-2809 .
[19] Huba J D. Finite Larmor radius magnetohydrodynamics of the RayleighTaylor instability[J].Physics of Plasmas,1996(3):2523-2532.
[20] Dewar R,Glasser A. Ballooning mode spectrum in general toroidal systems[J].Physics of Fluids,1983,26:3038-3052.
[21] Grassie K, Krech M. A complete set of resistive compressive ballooning equations for twodimensional flow equilibria[J].Physics of Fluids B: Plasma Physics,1990(2):536-538.
[22] Cooper W A. Plasma Ballooning instabilities in tokamaks with sheared toroidal flows[J].Physics and Controlled Fusion,1988,30:1805-1812.
相似文献/References:
[1]蒋海斌,陈巧玲,姚少波.有限拉莫尔半径效应对电阻性气球模的影响[J].福建工程学院学报,2014,12(03):263.[doi:10.3969/j.issn.1672-4348.2014.03.013]
Jiang Haibin,Chen Qiaolin,Yao Shaobo.Effect of finite Larmor radius on resistive ballooning modes[J].Journal of FuJian University of Technology,2014,12(01):263.[doi:10.3969/j.issn.1672-4348.2014.03.013]