[1]卢文凯,唐郑熠,连至助,等.基于信誉权重与分组的PBFT共识算法优化[J].福建理工大学学报,2025,23(06):564-570.[doi:10.3969/j.issn.2097-3853.2025.06.008]
 LU Wenkai,TANG Zhengyi,LIAN Zhizhu,et al.PBFT consensus algorithm optimization based on reputation weight and grouping[J].Journal of Fujian University of Technology;,2025,23(06):564-570.[doi:10.3969/j.issn.2097-3853.2025.06.008]
点击复制

基于信誉权重与分组的PBFT共识算法优化()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年06期
页码:
564-570
栏目:
出版日期:
2025-12-25

文章信息/Info

Title:
PBFT consensus algorithm optimization based on reputation weight and grouping
作者:
卢文凯唐郑熠连至助曹宝连
福建理工大学计算机科学与数学学院
Author(s):
LU Wenkai TANG Zhengyi LIAN Zhizhu CAO Baolian
School of Computer Science and Mathematics, Fujian University of Technology
关键词:
区块链实用拜占庭容错分组策略信誉权重机制
Keywords:
blockchainpractical Byzantine fault tolerancegrouping strategyreputation weight mechanism
分类号:
TP399
DOI:
10.3969/j.issn.2097-3853.2025.06.008
文献标志码:
A
摘要:
实用拜占庭容错(PBFT)算法在联盟链中应用广泛,但其消耗的时间会随着节点数量的增加而非线性增长,极大限制了联盟链共识过程的覆盖面。针对该问题,提出一种改进算法GWPBFT(group-weighted PBFT),采用分组策略将节点划分为若干分组,通过并行的组内局部共识提高共识效率,从而支持大规模的节点共识;通过信誉权重机制,使得信誉较高的节点在共识过程中拥有更大的决策权重,增强了系统在不可靠环境下的安全性。实验结果表明,在节点数为175 时,GWPBFT 相比PBFT 算法降低了92.85%的延迟、92.56%通信开销。在拜占庭节点比例达到80%的极端环境下,GWPBFT 仍能够确保共识过程的高可靠性和稳定性。
Abstract:
Practical Byzantine fault tolerance (PBFT) algorithm is widely applied in consortium blockchains. However, its time consumption grows non-linearly with the increase in the number of nodes, which greatly limits the coverage of the consensus process in consortium blockchains. To address this issue, an improved algorithm called GWPBFT (group-weighted PBFT) is proposed. This algorithm adopts a grouping strategy, dividing the nodes into several groups. Through parallel local consensus within each group, the consensus efficiency is improved, thus enabling support for large-scale node consensus. The GWPBFT algorithm also introduces a reputation weight mechanism, where nodes with higher reputation have greater decision-making weight in the consensus process, thereby enhancing the system’s security in unreliable environments. Experimental results show that, with 175 nodes, GWPBFT reduces latency by 92.85% and communication overhead by 92.56% compared with the PBFT algorithm. Even in extreme environments where Byzantine nodes account for 80% of the total, GWPBFT still ensures high reliability and stability of the consensus process.

参考文献/References:

[1] NAKAMOTO S. Bitcoin:a peer-to-peer electronic cash system[EB/OL].(2008-10-31)[2025-04-15]. https:∥bitcoin.org/bitcoin.pdf.[2] ZHENG Z B,XIE S A,DAI H N,et al. Blockchain challenges and opportunities:a survey[J]. International Journal of Web and Grid Services,2018,14(4):352.[3] 张亮,刘百祥,张如意,等. 区块链技术综述[J]. 计算机工程,2019,45(5):1-12.[4] 刘昌平,刘海,李威. 一种区块链网络的DDoS攻击模型[J]. 计算机应用与软件,2024,41(11):366-372,392.[5] GRAMOLI V. From blockchain consensus back to Byzantine consensus[J]. Future Generation Computer Systems,2020,107:760-769. [6] 谢晴晴,董凡. 轻量级区块链技术综述[J]. 软件学报,2023,34(1):33-49.[7] 张彭奕,宋杰. 区块链共识算法效能优化研究进展[J]. 计算机科学,2020,47(12):296-303.[8] 谭朋柳,王润庶,曾文豪,等. 区块链共识算法综述[J]. 计算机科学,2023,50(S1):691-702.[9] 何婧,豆天晨,陈琳,等. 基于SVM的DPoS共识机制改进[J]. 计算机应用研究,2024,41(9):2598-2603.[10] 张学旺,罗欣悦,雷志滔,等. 基于节点识别的改进拜占庭容错共识算法[J]. 信息安全研究,2024,10(9):818-823.[11] TANG S,WANG Z Q,JIANG J,et al. Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain[J]. Scientific Reports,2022,12(1):4426.[12] CHEN P Y,CHEN Y L,WANG X W,et al. A high-capacity slicing PBFT protocol based on reputation evaluation model[J]. Wireless Networks,2024,30(9):7469-7482.[13] 叶翰文,欧阳思源,包振强. 引入秘密共享的改进实用拜占庭容错算法[J]. 小型微型计算机系统,2023,44(6):1146-1152.[14] ZHENG X D,FENG W L,HUANG M X,et al. Optimization of PBFT algorithm based on improved C4.5[J]. Mathematical Problems in Engineering,2021,2021(1):5542078.[15] WANG Y,ZHONG M L,CHENG T. Research on PBFT consensus algorithm for grouping based on feature trust[J]. Scientific Reports,2022,12(1):12515. [16] XU G Q,BAI H P,XING J,et al. SG-PBFT:a secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles[J]. Journal of Parallel and Distributed Computing,2022,164:1-11.[17] WU J Y,LIU Y,CAI J F,et al. Blockchain consensus mechanism for distributed energy transactions[J]. Wireless Communications and Mobile Computing,2022,2022(1):4314734.[18] WANG Z F,REN Y W,CAO Z Y,et al. LRBFT:improvement of practical Byzantine fault tolerance consensus protocol for blockchains based on Lagrange interpolation[J]. Peer-to-Peer Networking and Applications,2023,16(2):690-708.[19] HE F Y,FENG W L,ZHANG Y,et al. An improved Byzantine fault-tolerant algorithm based on reputation model[J]. Electronics,2023,12(9):2049.[20] 涂园超,陈玉玲,李涛,等. 基于信誉投票的PBFT改进方案[J]. 应用科学学报,2021,39(1):79-89.

相似文献/References:

[1]张婷.基于区块链技术的数字资产确权交易模型研究[J].福建理工大学学报,2019,17(01):65.[doi:10.3969/j.issn.1672-4348.2019.01.012]
 ZHANG Ting.A study of digital assets’copyright confirmation and transaction based on block chain technology[J].Journal of Fujian University of Technology;,2019,17(06):65.[doi:10.3969/j.issn.1672-4348.2019.01.012]
[2]程智宾、江吉彬.基于NB-IoT数据交互的电动自行车充电系统设计[J].福建理工大学学报,2021,19(03):242.[doi:10.3969/j.issn.1672-4348.2021.03.007]
 CHENG Zhibin,JIANG Jibin.Design of charging system for electric bicycle based on NB-IoT data interaction[J].Journal of Fujian University of Technology;,2021,19(06):242.[doi:10.3969/j.issn.1672-4348.2021.03.007]

更新日期/Last Update: 2025-12-25