[1]黄荣杰,林航,张翼,等.基于抗冠状病毒优化算法的微电网优化调度[J].福建理工大学学报,2025,23(03):283-291.[doi:10.3969/j.issn.2097-3853.2025.03.011]
 HUANG Rongjie,LIN Hang,ZHANG Yi,et al.Optimization of microgrid scheduling based on anti-coronavirus optimization algorithm[J].Journal of Fujian University of Technology;,2025,23(03):283-291.[doi:10.3969/j.issn.2097-3853.2025.03.011]
点击复制

基于抗冠状病毒优化算法的微电网优化调度
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年03期
页码:
283-291
栏目:
出版日期:
2025-06-25

文章信息/Info

Title:
Optimization of microgrid scheduling based on anti-coronavirus optimization algorithm
作者:
黄荣杰林航张翼阮仲体林金阳
福建理工大学微电子技术研究中心
Author(s):
HUANG Rongjie LIN Hang ZHANG Yi TRONG The Nguyen LIN Jinyang
Research Center for Microelectronics Technology, Fujian University of Technology
关键词:
风光储微电网优化调度模型抗冠状病毒优化算法算例分析
Keywords:
wind-solar-storage microgrid optimization scheduling model ACVO case study analysis
分类号:
TM71
DOI:
10.3969/j.issn.2097-3853.2025.03.011
文献标志码:
A
摘要:
为提高风光储微电网系统的经济性,以系统运行成本最低为目标,在满足微电网安全经济运行的多重约束条件下,建立了一种新的并网优化调度模型。采用抗冠状病毒优化算法( anti?coronavirusoptimization algorithm,ACVO)对该模型进行求解,得到了光伏机组、风力机组、蓄电池及上级电网的最优出力结果。与粒子群算法(particle swarm optimization, PSO)和灰狼算法(grey wolf optimization,GWO)对比,ACVO 算法使系统日运行成本分别降低了1.45%和4.50%。算例分析验证了所提模型的可行性,并表明ACVO算法在风光储能系统优化调度中表现出优越的全局搜索能力以及更快的收敛速度,为实现清洁、可持续能源供应提供了更为可行和高效的解决方案。
Abstract:
In order to improve the economy of the wind-solar-storage microgrid system, a new grid-connected optimal scheduling model is established to minimize the operating cost of the system and meet the multiple constraints of the safe and economic operation of the microgrid. The anti-coronavirus optimization algorithm (ACVO) is used to solve the model, yielding the optimal output for photovoltaic units, wind turbines, batteries, and the main grid. Comparative results with the particle swarm optimization (PSO) and grey wolf optimization (GWO) algorithms show that the ACVO algorithm reduces the daily operating costs by 1.45% and 4.50%, respectively. Case study analysis verifies the feasibility of the proposed model and demonstrates that the ACVO algorithm exhibits superior global search capability and faster convergence speed in the optimization scheduling of wind-solar-storage systems, providing a more feasible and efficient solution for achieving clean and sustainable energy supply.

参考文献/References:

[1] 周成伟. 基于风光储微电网下的储能容量优化配置研究[D]. 南京:南京信息工程大学,2023.[2] 李琼慧,叶小宁,胡静,等. 分布式能源规模化发展前景及关键问题[J]. 分布式能源,2020,5(2):1-7.[3] 马纪梅,张欣彤,张政林,等. 基于改进麻雀搜索算法的微网容量优化配置[J]. 电子测量技术,2022,45(8):76-82.[4] 翁訸,张建华,蔡炯晖,等. 并网型风光互补发电系统储能优化调度研究[J]. 电力设备管理,2021(5):133-135,196.[5] 刘佳楠,熊宁,朱文广,等. 电力市场环境下风光储联合运行优化策略[J]. 电力科学与技术学报,2017,32(1):11-15. [6] 黄云云,吴健,王斌,等. 基于改进灰狼算法的混合发电系统优化设计[J]. 福州大学学报(自然科学版),2021,49(6):775-781. [7] 曾志辉,李雪强,尹路路,等. 基于改进蝙蝠算法的微网群能量优化方法[J]. 电子测量技术,2023,46(10):53-60. [8] 李东东,徐连连,刘翔,等. 考虑可削减负荷参与的含风光储微网经济优化调度[J]. 电力系统保护与控制,2017,45(2):35-41. [9] 赵毅,王维庆,闫斯哲. 考虑阶梯型碳交易的风光储联合系统分布鲁棒优化调度[J]. 电力系统保护与控制,2023,51(6):127-136. [10] LI Q H,WANG Z Y,WEI A X. Research on optimal scheduling of wind-PV-hydro-storage power complementary system based on BAS algorithm[C]∥Proceedings of the 2nd International Seminar on Computational Intelligence, Engineering and Technology. 2018: 665-670.[11] 黎嘉明,郑雪阳,艾小猛,等. 独立海岛微网分布式电源容量优化设计[J]. 电工技术学报,2016,31(10):176-184.[12] LIU B X,LUND J R,LIAO S L,et al. Optimal power peak shaving using hydropower to complement wind and solar power uncertainty[J]. Energy Conversion and Management,2020,209:112628.[13] 卢美玲. 家庭光伏发电系统经济效益优化调度模型研究[D]. 北京:华北电力大学,2017.[14] EMAMI H. Anti-coronavirus optimization algorithm[J]. Soft Computing,2022,26(11):4991-5023. [15] MUTHUPERUMAL PERIYAPERUMAL R,RAMASAMY G,AZEES M,et al. FACVSPO:fractional anti corona virus student psychology optimization enabled deep residual network and hybrid correlative feature selection for distributed denial-of-service attack detection in cloud using spark architecture[J]. International Journal of Adaptive Control and Signal Processing,2022,36(7):1647-1669.[16] GSRE S,GANESHAN R,JINGLE I D J,et al. FACVO-DNFN:Deep learning-based feature fusion and distributed denial of Service attack detection in cloud computing[J]. Knowledge-Based system,2023,261.[17] 王汉宇. 基于改进麻雀搜索算法的微电网优化调度[J]. 兰州文理学院学报(自然科学版),2022,36(6) :59-63.

更新日期/Last Update: 2025-06-25