[1]何栋炜,王永杰,蒋学程,等.基于改进沙猫群优化算法6-RUS运动学正解[J].福建理工大学学报,2025,23(03):277-282.[doi:10.3969/j.issn.2097-3853.2025.03.010]
 HE Dongwei,WANG Yongjie,JIANG Xuecheng,et al.Kinematics forward solution based on你improved sand cat swarm optimization algorithm[J].Journal of Fujian University of Technology;,2025,23(03):277-282.[doi:10.3969/j.issn.2097-3853.2025.03.010]
点击复制

基于改进沙猫群优化算法6-RUS运动学正解
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年03期
页码:
277-282
栏目:
出版日期:
2025-06-25

文章信息/Info

Title:
Kinematics forward solution based on你improved sand cat swarm optimization algorithm
作者:
何栋炜王永杰蒋学程潘嘉鑫刘丽桑陈健
福建理工大学信息科学与工程学院
Author(s):
HE Dongwei WANG Yongjie JIANG XuechengPAN Jiaxin LIU Lisang CHEN Jian
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
6-RUS正解改进沙猫群优化算法牛顿迭代法
Keywords:
6-RUS forward solution improved sand cat swarm optimization algorithm Newton’s iterative method
分类号:
TP242.2
DOI:
10.3969/j.issn.2097-3853.2025.03.010
文献标志码:
A
摘要:
为了提高6?RUS并联型机构正解求解速度,将改进沙猫群优化算法与牛顿迭代法相结合,设计了一种并联平台正解算法。通过几何分析法建立运动学正解的非线性方程;基于改进沙猫群优化算法生成迭代初值;基于所选初值使用牛顿迭代法求出精确结果。实验结果表明,与粒子群优化算法等现有方法比较,该方法有效减少了选代次数和计算时间,平均求解效率至少提高20%。
Abstract:
In order to improve the speed of forward solution of 6-RUS parallel mechanism, a forward solution algorithm for parallel platform was designed by combining the improved sand cat swarm optimization algorithm with the Newton iteration method. The nonlinear equation of kinematics forward solution was established by geometric analysis method; the initial value of iteration was generated based on the improved sand cat swarm optimization algorithm; the accurate result was obtained by the Newton iteration method based on the selected initial value. Experimental results show that compared with existing methods such as particle swarm optimization algorithm, this method effectively reduces the number of selections and calculation time, and the average solution efficiency is improved by at least 20%.

参考文献/References:

[1] 冷玉珊. 六自由度串联机器人运动学及轨迹规划分析[D]. 抚顺:辽宁石油化工大学,2020.[2] MENG Z R,CAO W A,DING H F,et al. A new six degree-of-freedom parallel robot with three limbs for high-speed operations[J]. Mechanism and Machine Theory,2022,173:104875.[3] MORELL A,TAROKH M,ACOSTA L. Solving the forward kinematics problem in parallel robots using support vector regression[J]. Engineering Applications of Artificial Intelligence,2013,26(7):1698-1706.[4] 刘伟锐,赵恒华. 改进粒子群算法在并联机构位置正解中的应用[J]. 机械设计与制造,2014(2):181-183.[5] 朱齐丹,张铮,纪勋. Stewart平台实时位置正解通用方法[J]. 哈尔滨工程大学学报,2021,42(3):394-399.[6] 张强,秦东晨,朱强,等. 基于神经网络-牛顿混合算法的盾构机掘进位姿求解研究[J]. 机械传动,2021,45(7):24-29.[7] 王启明,苏建,隋振,等. 一种新型冗余驱动并联机构位姿正解研究[J]. 机械工程学报,2019,55(9):40-47.[8] 卢文娟,郑旭,荣令魁,等. 一种基于角度传感器的6-UPS机构正向运动学分析方法[J]. 机器人,2020,42(5):550-556.[9] 李佳霖,李疆. 基于角度传感器的3-RSR并联机构位置分析[J]. 制造业自动化,2023,45(3):139-143,156.[10] 王康,司鹏,陈莉,等. 基于改进沙猫群算法的无人机三维航迹规划[J]. 兵工学报,2023,44(11):3382-3393.[11] 朱菊香,张诗云,张涛,等. 基于二次分解和改进沙猫群优化算法的空气质量预测[J]. 国外电子测量技术,2024,43(5):190-200..[12] SEYYEDABBASI A,KIANI F. Sand sat swarm optimization:a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers,2023,39(4):2627-2651.[13] WU D,RAO H H,WEN C S,et al. Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems[J]. Mathematics,2022,10(22):4350.[14] 李荣雨,王颖. 基于莱维飞行的改进粒子群算法[J]. 系统仿真学报,2017,29(8):1685-1691,1701[15] 张严,秦亮曦. 基于Levy飞行策略的改进樽海鞘群算法[J]. 计算机科学,2020,47(7):154-160.[16] 崔鸣,靳其兵. 基于Levy飞行策略的灰狼优化算法[J]. 计算机与数字工程,2022,50(5):948-952,958.[17] 周鹏,董朝轶,陈晓艳,等. 基于Tent混沌和透镜成像学习策略的平衡优化器算法[J]. 控制与决策,2023,38(6):1569-1576.[18] 贾鹤鸣,陈丽珍,力尚龙,等. 透镜成像反向学习的精英池侏儒猫鼬优化算法[J]. 计算机工程与应用,2023,59(24):131-139. [19] 李磊. 六自由度并联平台位置正解及控制方法研究[D]. 哈尔滨:哈尔滨工程大学,2008.

更新日期/Last Update: 2025-06-25