[1]梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.[doi:10.3969/j.issn.1672-4348.2023.06.015]
LIANG Jingrun,LIU Lisang,CHEN Jionghui,et al.Multi-strategy optimized sparrow searchalgorithm and its application in path planning[J].Journal of Fujian University of Technology;,2023,21(06):605-612.[doi:10.3969/j.issn.1672-4348.2023.06.015]
点击复制
多策略优化麻雀搜索算法及其路径规划的应用()
《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]
- 卷:
-
第21卷
- 期数:
-
2023年06期
- 页码:
-
605-612
- 栏目:
-
- 出版日期:
-
2023-12-25
文章信息/Info
- Title:
-
Multi-strategy optimized sparrow searchalgorithm and its application in path planning
- 作者:
-
梁景润; 刘丽桑; 陈炯晖; 张友渊; 陈家煜
-
福建理工大学电子电气与物理学院
- Author(s):
-
LIANG Jingrun; LIU Lisang; CHEN Jionghui; ZHANG Youyuan; CHEN Jiayu
-
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
-
- 关键词:
-
Logistic混沌映射; 自适应惯性因子; 柯西变异算法; 麻雀搜索算法; 路径规划
- Keywords:
-
Logistic chaotic mapping; adaptive inertia factor; cauchy mutation algorithm; sparrow search algorithm; path planning
- 分类号:
-
TP18
- DOI:
-
10.3969/j.issn.1672-4348.2023.06.015
- 文献标志码:
-
A
- 摘要:
-
针对传统的麻雀搜索算法存在初始解质量较差、收敛效率低和求解精度不高等缺点,提出了一种基于多策略优化的麻雀搜索算法(LAFSSA)。首先,利用Logistic 混沌映射初始化麻雀种群,丰富其多样性;其次,利用自适应惯性因子改进麻雀种群的生产者的位置更新方式,使得算法在迭代初期专注于全局空间的搜索,在迭代后期专注于局部区域的挖掘;最后,融合柯西变异算法进一步增强最差麻雀个体与最优麻雀个体的交流,加快算法的收敛速度,使其在迭代后期能够跳出局部最优。将LAFSSA 应用于移动机器人的路径规划,仿真结果表明,与传统的麻雀搜索算法相比,LAFSSA 不仅能够减少路径寻优时间,缩短移动机器人的路径长度,还能减少路径转折次数,提升路径的平滑性。
- Abstract:
-
In view of the shortcomings of traditional sparrow search algorithm (SSA), such as poor initial solution quality, low convergence efficiency and low solution accuracy, a multi-strategy optimizd SSA is proposed, which is called LAFSSA. Firstly, the sparrow population is initialized by Logistic chaotic mapping to enrich its diversity. Secondly, the adaptive inertia factor is utilized to improve the location update method of producers of the sparrow population, so that the algorithm focuses on global space search at the beginning of iteration and on local area mining at the end of iteration. Finally, the Cauchy mutation algorithm is integrated to further enhance the communication between the worst sparrow individual and the best one, which accelerates the convergence speed of the algorithm and enables it to get rid of the local optimum in later iteration. The LAFSSA is employed to the path planning of the mobile robot, and experiment results show that, compared with the SSA, the proposed LAFSSA can not only reduce the path optimization time and shorten the path length of the mobile robot, but also decrease the number of path turns and improve the smoothness of the planned path.
参考文献/References:
[1] 崔炜,朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用,2023,59(19):1020.[2] 张飞凯,黄永忠,李连茂,等. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报(工学版),2022,52(6):176182.[3] 谢春丽,高胜寒,孙学志. 融合改进A*算法和贝塞尔曲线优化的路径规划算法[J]. 重庆理工大学学报(自然科学),2022,36(7):177187.[4] 程谦,高嵩,曹凯,等. 基于PRM优化算法的移动机器人路径规划[J]. 计算机应用与软件,2020,37(12):254259,296.[5] 陈法法,蒋浩,李振,等. 基于改进RRT的智能巡检机器人狭窄通道路径规划[J]. 组合机床与自动化加工技术,2022(10):4045.[6] 师玮,张金柱,王涛,等. 改进型PSO的6自由度工业机械臂轨迹规划[J]. 组合机床与自动化加工技术,2022(9):2428.[7] 陈高远,宋云雪. 改进遗传算法在移动机器人路径规划中的应用研究[J]. 计算机应用与软件,2023,40(2):302307.[8] 于飞,卢朝霞. 基于改进蚁群算法的四足巡检机器人全局路径规划方法[J]. 制造业自动化,2022,44(7):154157.[9] 虞馥泽,潘大志. 改进萤火虫算法求解多机器人路径规划[J]. 计算机应用研究,2023,40(3):800804.[10] 刘志强,何丽,袁亮,等. 采用改进灰狼算法的移动机器人路径规划[J]. 西安交通大学学报,2022,56(10):4960.[11] LIANG J R,LIU L S. Optimal path planning method for unmanned surface vehicles based on improved sharkinspired algorithm[J]. Journal of Marine Science and Engineering,2023,11(7):1386.[12] XUE J K,SHEN B. A novel swarm intelligence optimization approach:sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1):2234.[13] ZHANG GJ,ZHANG E H. An improved sparrow search based intelligent navigational algorithm for local path planning of mobile robot[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14(10):1411114123.[14] 毛清华,张强,毛承成,等. 混合正弦余弦算法和Lévy飞行的麻雀算法[J]. 山西大学学报(自然科学版),2021,44(6):10861091. [15] LIU LS,LIANG J R,GUO K Q,et al. Dynamic path planning of mobile robot based on improved sparrow search algorithm[J]. Biomimetics,2023,8(2):182.[16] ALAWIDA M,TEH J S,MEHMOOD A,et al. A chaosbased block cipher based on an enhanced logistic map and simultaneous confusiondiffusion operations[J]. Journal of King Saud University Computer and Information Sciences,2022,34(10):81368151. [17] ZHAO XD,FANG Y M,LIU L,et al. A covariancebased Mothflame optimization algorithm with Cauchy mutation for solving numerical optimization problems[J]. Applied Soft Computing,2022,119:108538.
更新日期/Last Update:
2023-12-25