[1]贾鹤鸣,李永超,游进华,等.改进沙猫群优化算法的机器人路径规划[J].福建工程学院学报,2023,21(01):72-77.[doi:10.3969/j.issn.1672-4348.2023.01.011]
 JIA Heming,LI Yongchao,YOU Jinhua,et al.Robot path planning based on improved sand cat swarm optimization algorithm[J].Journal of FuJian University of Technology,2023,21(01):72-77.[doi:10.3969/j.issn.1672-4348.2023.01.011]
点击复制

改进沙猫群优化算法的机器人路径规划()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第21卷
期数:
2023年01期
页码:
72-77
栏目:
出版日期:
2023-02-25

文章信息/Info

Title:
Robot path planning based on improved sand cat swarm optimization algorithm
作者:
贾鹤鸣李永超游进华李政邦饶洪华文昌盛
三明学院
Author(s):
JIA Heming LI Yongchao YOU Jinhua LI Zhengbang RAO Honghua WEN Changsheng
Department of Information Engineering,Sanming University
关键词:
机器人路径规划沙猫群优化算法三次样条插值混沌映射互利共生莱维飞行
Keywords:
robot path planning sand cat swarm optimization algorithm cubic spline interpolation chaotic mapping mutual symbiosis Levy flight
分类号:
TP18
DOI:
10.3969/j.issn.1672-4348.2023.01.011
文献标志码:
A
摘要:
为了寻找更优的机器人移动路径,将沙猫群优化算法与三次样条插值方法进行融合,对沙猫群优化算法进行改进。在改进的沙猫群优化算法中,利用混沌映射的均匀性初始化种群以提高种群多样性;通过融合互利共生和莱维飞行策略减少局部最优解的消极影响,提高算法的收敛速度和精度。通过两种仿真实验对比6 种优化算法的实验数据,结果表明,改进的沙猫群优化算法的最优解、最差解和平均解都优于对比算法,验证了改进沙猫群优化算法对于解决移动机器人路径规划问题的有效性和工程实用性。
Abstract:
In order to find a better robot moving path, the sand cat swarm optimization algorithm was combined with the cubic spline interpolation method to improve the sand cat swarm optimization algorithm. In the improved sand cat swarm optimization algorithm, the uniformity of chaotic mapping was used to initialize the population to improve the population diversity. Secondly, by integrating mutualism and introducing Levy flight strategy, the negative impact of local optimal solution was reduced and the convergence speed and accuracy of the algorithm were improved. In two simulation experiments, the experimental data of the six optimization algorithms were compared. Results show that the optimal solution, the worst solution and the average solution of the improved sand cat swarm optimization algorithm were all better than those of the comparison algorithm, which verifies the effectiveness and engineering practicability of the improved sand cat swarm optimization algorithm for solving the path planning problem of mobile robots.

参考文献/References:

[1]刘景森,吉宏远,李煜. 基于改进蝙蝠算法和三次样条插值的机器人路径规划[J]. 自动化学报,2021,47(7):1710-1719.[2]CONN R A,KAM M. Robot motion planning on N-dimensional star worlds among moving obstacles[J]. IEEE Transactions on Robotics and Automation,1998,14(2):320-325.[3]闫皎洁,张锲石,胡希平. 基于强化学习的路径规划技术综述[J]. 计算机工程,2021,47(10):16-25.[4]成怡,郝密密. 改进深度强化学习的室内移动机器人路径规划[J]. 计算机工程与应用,2021,57(21):256-262.[5]裴以建,杨超杰,杨亮亮. 基于改进RRT*的移动机器人路径规划算法[J]. 计算机工程,2019,45(5):285-290,297.[6]高怡杰,何湘竹,石英,等. 求解烟草配送路径规划问题的新型智能优化算法[J]. 中南民族大学学报(自然科学版),2022,41(1):87-93.[7]任春明,张建勋. 基于优化蚁群算法的机器人路径规划[J]. 计算机工程,2008,34(15):1-3,35.[8]李艳生,万勇,张毅,等. 基于人工蜂群-自适应遗传算法的仓储机器人路径规划[J]. 仪器仪表学报,2022,43(4):282-290.[9]王洪斌,尹鹏衡,郑维,等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人,2020,42(3):346-353.[10]刘宇. 煤矿井下履带式机器人路径规划方法研究[D]. 徐州:中国矿业大学,2021.[11]SEYYEDABBASI A,KIANI F. Sand cat swarm optimization:a nature-inspired algorithm to solve global optimization problems[J]. Engineering With Computers,2022:1-25.[12]陈功,曾国辉,黄勃,等. 融合互利共生和透镜成像学习的HHO算法[J]. 计算机工程与应用,2022,58(10):76-86.[13]柴岩,任生. 多策略协同优化的改进HHO算法[J]. 计算机应用研究,2022,39(12):3658-3666,3677.[14]RAO R V,SAVSANI V J,VAKHARIA D P. Teaching-learning-based optimization:a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design,2011,43(3):303-315.[15]MIRJALILI S,MIRJALILI S M,HATAMLOU A. Multi-verse optimizer:a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications,2016,27(2):495-513.[16]AHMADIANFAR I,HEIDARI AA,GANDOMI A H,et al. RUN beyond the metaphor:an efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems With Applications,2021,181:115079.[17]ABUALIGAH L,DIABAT A,MIRJALILI S,et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering,2021,376:113609.[18]熊昕霞,何利力. 基于混合粒子群算法的移动机器人路径规划[J]. 计算机系统应用,2021,30(4):153-159.

更新日期/Last Update: 2023-02-25