[1]吴婧,林凌敏.纵向通风下地铁疏散走道内烟气运动特性[J].福建工程学院学报,2022,20(06):594-600.[doi:10.3969/j.issn.1672-4348.2022.06.014]
 WU Jing,LIN Lingmin.Characteristics of smoke movement in subway evacuation pathways under longitudinal ventilation[J].Journal of FuJian University of Technology,2022,20(06):594-600.[doi:10.3969/j.issn.1672-4348.2022.06.014]
点击复制

纵向通风下地铁疏散走道内烟气运动特性()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年06期
页码:
594-600
栏目:
出版日期:
2022-12-25

文章信息/Info

Title:
Characteristics of smoke movement in subway evacuation pathways under longitudinal ventilation
作者:
吴婧林凌敏
福建工程学院建筑新能源与节能福建省高校重点实验室
Author(s):
WU Jing LIN Lingmin
Key Laboratory of New Energy and Energy-saving in Architectural Design in Colleges and Universities of Fujian Province, Fujian University of Technology
关键词:
地铁区间隧道火灾阻塞比纵向通风CFD模拟
Keywords:
subway section tunnel fire blockage ratio longitudinal ventilation CFD simulation
分类号:
U121
DOI:
10.3969/j.issn.1672-4348.2022.06.014
文献标志码:
A
摘要:
以福州地铁四号线的一个地铁隧道区间为研究对象,利用FLUENT构建车头电气火灾的数值模型。重点分析了在阻塞比为0.38与0.55条件下火灾烟气的运动特征及对疏散人员的影响。模拟结果表明:在火源上游位置,在未开启通风和开启通风的条件下,高温烟气聚集在隧道顶部,随高度下降,烟气温度降低,建议设置离轨面高度较低的疏散走道以提供更大的安全空间。同时,在未开启通风,且火源释热率及火灾发展时间相同的情况下,高阻塞比隧道内的初始温度较高;开启纵向通风后,对流换热增强,降温快,高温烟气在火源上游沿隧道长度方向、高度方向的运动都能得到有效的控制,有利于人员疏散。最后,给出了纵向通风条件下的疏散方案及建议。
Abstract:
Taking a subway tunnel section of Fuzhou Metro Line 4 as the research object, a numerical model of the locomotive electrical fire was constructed with FLUENT. Emphasis was put on the analysis of fire-induced smoke movement impact on evacuees when the blockage ratio was 0.38 and 0.55, respectively. Simulation results show that in the upstream position of the fire source, whether vented or not, smoke with a higher temperature appears primarily near the tunnel ceiling, and the smoke temperature decreases with the height falling. When the ventilation is not turned on, the initial temperature of the tunnel with the higher blockage ratio appears to be higher after the same fire development time and heat release rate. After introducing longitudinal ventilation, the convection heat exchange is enhanced and the cooling is faster.In the upstream of the fire source, the movement of high temperature smoke along the tunnel length direction and height direction upstream of the fire source can be effectively controlled. This is beneficial for the evacuation process. At last, the evacuation plan and suggestions underthe longitudinal ventilation are given.

参考文献/References:

[1] INGASON H, LI Y Z, Lnnermark A. Tunnel fire dynamics [M]. New York: Springer, 2015.[2] OKA Y, ATKINSON G T. Control of smoke flow in tunnel fires[J]. Fire Safety Journal, 1995, 25(4):305-322.[3] 孙虹. 地铁区间火灾工况下疏散指示联动方案的对比分析[J]. 城市轨道交通研究, 2021, 24(1):175-179.[4] 陈国栋, 赵航. 铁路及地铁隧道内列车火灾疏散模式调研与分析[J]. 高速铁路技术, 2022, 13(2):6-10.[5] ZHOU D, YAN X, ZHENG J L. Study on fire characteristics of subway train running with fire[C]//14th COTA International Conference of Transportation Professionals. Reston, VA, USA:American Society of Civil Engineers, 2014:3785-3796.[6] GANNOUNI S, MAAD R B. Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires[J]. Tunnelling and Underground Space Technology, 2015, 48:147-155.[7] ZHANG S G, CHENG X D, YAO Y Z, et al. An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires[J]. Applied Thermal Engineering, 2016, 99:214-223.[8] 罗振敏, 郝强强, 程方明, 等. 地铁隧道火灾模拟及人员疏散研究[J]. 消防科学与技术, 2019, 38(3):363-367.[9] 陈火炬, 韩柯柯, 曹松, 等. 地铁区间隧道火灾状况下人员应急疏散效率研究[J]. 城市轨道交通研究, 2022, 25(3):141-144.[10] 住房和城乡建设部. 地铁限界标准:CJJ/T96—2018[S]. 北京:中国建筑工业出版社, 2018.[11] ZHANG S G, SHI L, LI X B, et al. Critical ventilation velocity under the blockage of different metro train in a long metro tunnel[J]. Fire and Materials, 2020, 44(4):497-505.[12] VEGA M G, ARGELLES DAZ K M, FERNNDEZ ORO J M, et al. Numerical 3D simulation of a longitudinal ventilation system:memorial tunnel case[J]. Tunnelling and Underground Space Technology, 2008, 23(5):539-551.[13] WANG F, WANG M N. A computational study on effects of fire location on smoke movement in a road tunnel[J]. Tunnelling and Underground Space Technology, 2016, 51:405-413.[14] ANSYS, Inc.Ansys fluent user’s guide [Z]. USA:SAS IP, Inc., 2021.[15] 住房和城乡建设部. 地铁设计防火标准:GB 51298—2018[S]. 北京:中国计划出版社, 2018.[16] INGASON H, SECO F. Numerical simulation of a model scale tunnel fire tests[Z].Sweden:SP Swedish National Testing and Research Institute, 2005.[17] WU J, SHEN F M. Experimental study on the effects of ventilation on smoke movement in tunnel fires[J]. International Journal of Ventilation, 2016, 15(1):94-103.[18] National Fire Protection Association. NFPA130, standard for fixed guideway transit and passenger rail systems[S]. USA: nfpa.org.,2017.

更新日期/Last Update: 2022-12-25