参考文献/References:
[1] 郑建岚, 晁鹏飞. 基于水化度及其结构组成的自密实混凝土基本徐变计算模型[J]. 工程力学, 2009, 26(12): 71-75.[2] HUANG H D, HUANG S S, PILAKOUTAS K. Modeling for assessment of long-term behavior of prestressed concrete box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(3): 04018002. [3] NIEWIADOMSKI P, STEFANIUK D. Creep assessment of the cement matrix of self-compacting concrete modified with the addition of nanoparticles using the indentation method[J]. Applied Sciences, 2020, 10(7): 2442. [4] 晁鹏飞, 郑建岚. 自密实混凝土徐变性能试验研究[J]. 建筑结构学报, 2010, 31(2): 99-103. [5] RAHIMI-AGHDAM S, BAANT Z P, CUSATIS G. Extended microprestress-solidification theory for long-term creep with diffusion size effect in concrete at variable environment[J]. Journal of Engineering Mechanics, 2019, 145(2): 04018131. [6] 周履, 陈永春. 收缩徐变[M]. 北京: 中国铁道出版社, 1994: 3-10. [7] 惠荣炎, 黄国兴, 易冰若. 混凝土的徐变[M]. 北京: 中国铁道出版社, 1988: 2-5.[8] Committee 209. Prediction of creep, shrinkage and temperature effects in concrete structure[R]. Detroit, USA: American Concrete Institute, 1992.[9] CEB-FIP. CEB-FIP model code 1990, Final version[S]. London, UK: Thomas Telford Ltd., 1993.[10] 龚洛书, 惠满印, 杨蓓. 砼收缩与徐变的实用数学表达式[J]. 建筑结构学报, 1988, 9(5): 37-42. [11] WENDNER R, HUBLER M H, BEANT Z P. The B4 model for multi-decade creep and shrinkage prediction[C]//Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9). Cambridge, Massachusetts, USA: American Society of Civil Engineers, 2013: 429-436. [12] HWANG E, KIM G, KOO K, et al. Compressive creep and shrinkage of high-strength concrete based on limestone coarse aggregate applied to high-rise buildings[J]. Materials, 2021, 14(17): 5026.