[1]晁鹏飞.基于参数敏感性的自密实混凝土徐变模型[J].福建工程学院学报,2021,19(06):532-547.[doi:10.3969/j.issn.1672-4348.2021.06.005]
 CHAO Pengfei.Creep mathematical model of self-compacting concrete 〖JZ〗based on parameter sensitivity[J].Journal of FuJian University of Technology,2021,19(06):532-547.[doi:10.3969/j.issn.1672-4348.2021.06.005]
点击复制

基于参数敏感性的自密实混凝土徐变模型()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年06期
页码:
532-547
栏目:
出版日期:
2021-12-25

文章信息/Info

Title:
Creep mathematical model of self-compacting concrete 〖JZ〗based on parameter sensitivity
作者:
晁鹏飞
福建省永正工程质量检测有限公司
Author(s):
CHAO Pengfei
Fujian Yongzheng Construction Quality Inspection Co., Ltd.
关键词:
自密实混凝土徐变计算模型参数敏感性
Keywords:
self-compacting concrete (SCC) creep mathematical model parameter sensitivity
分类号:
TU313
DOI:
10.3969/j.issn.1672-4348.2021.06.005
文献标志码:
A
摘要:
由于配合比的特殊性,自密实混凝土的徐变性能与普通混凝土存在差异。文章对自密实混凝土多参数进行徐变试验,分析胶骨比、水胶比、砂率和粉煤灰掺量4 个参数的敏感性,建立自密实混凝土双曲线徐变模型,应用于自密实混凝土长期变形的预测。
Abstract:
Due to the particularity of its mix proportion, creep performance of SCC is different from that of ordinary concrete. Based on the creep experimental data considering the influence of multiple parameters, the sensitivities of four main parameters, i.e., binder-aggregate ratio, water-binder ratio, sand ratio and fly ash content, were analyzed. The mathematical model of hyperbolic function of SCC creep is established and is used to predict the long-term deformation of SCC.

参考文献/References:

[1] 郑建岚, 晁鹏飞. 基于水化度及其结构组成的自密实混凝土基本徐变计算模型[J]. 工程力学, 2009, 26(12): 71-75.[2] HUANG H D, HUANG S S, PILAKOUTAS K. Modeling for assessment of long-term behavior of prestressed concrete box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(3): 04018002. [3] NIEWIADOMSKI P, STEFANIUK D. Creep assessment of the cement matrix of self-compacting concrete modified with the addition of nanoparticles using the indentation method[J]. Applied Sciences, 2020, 10(7): 2442. [4] 晁鹏飞, 郑建岚. 自密实混凝土徐变性能试验研究[J]. 建筑结构学报, 2010, 31(2): 99-103. [5] RAHIMI-AGHDAM S, BAANT Z P, CUSATIS G. Extended microprestress-solidification theory for long-term creep with diffusion size effect in concrete at variable environment[J]. Journal of Engineering Mechanics, 2019, 145(2): 04018131. [6] 周履, 陈永春. 收缩徐变[M]. 北京: 中国铁道出版社, 1994: 3-10. [7] 惠荣炎, 黄国兴, 易冰若. 混凝土的徐变[M]. 北京: 中国铁道出版社, 1988: 2-5.[8] Committee 209. Prediction of creep, shrinkage and temperature effects in concrete structure[R]. Detroit, USA: American Concrete Institute, 1992.[9] CEB-FIP. CEB-FIP model code 1990, Final version[S]. London, UK: Thomas Telford Ltd., 1993.[10] 龚洛书, 惠满印, 杨蓓. 砼收缩与徐变的实用数学表达式[J]. 建筑结构学报, 1988, 9(5): 37-42. [11] WENDNER R, HUBLER M H, BEANT Z P. The B4 model for multi-decade creep and shrinkage prediction[C]//Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9). Cambridge, Massachusetts, USA: American Society of Civil Engineers, 2013: 429-436. [12] HWANG E, KIM G, KOO K, et al. Compressive creep and shrinkage of high-strength concrete based on limestone coarse aggregate applied to high-rise buildings[J]. Materials, 2021, 14(17): 5026.

更新日期/Last Update: 2021-12-25