[1]林振生.一类Sobolev空间紧嵌入定理[J].福建工程学院学报,2021,19(01):81-83.[doi:10.3969/j.issn.1672-4348.2021.01.014]
 LIN Zhensheng.Imbedding theorem for a kind of Sobolev space[J].Journal of FuJian University of Technology,2021,19(01):81-83.[doi:10.3969/j.issn.1672-4348.2021.01.014]
点击复制

一类Sobolev空间紧嵌入定理()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第19卷
期数:
2021年01期
页码:
81-83
栏目:
出版日期:
2021-02-25

文章信息/Info

Title:
Imbedding theorem for a kind of Sobolev space
作者:
林振生
福建工程学院计算机科学与数学学院
Author(s):
LIN Zhensheng
School of Computer Science and Mathematics, Fujian University of Technology
关键词:
Sobolev空间 位势函数 H?lder不等式 紧嵌入
Keywords:
Sobolev space potential function H?lder inequality compact imbedding
分类号:
O175.2
DOI:
10.3969/j.issn.1672-4348.2021.01.014
文献标志码:
A
摘要:
利用H?lder插值不等式论证了仅需Sobolev空间有界弱收敛子序列在某个Lp(RN)空间上强收敛。借助更弱位势函数自身性质、有界区域上经典的Sobolev紧嵌入定理,巧妙地将全空间划分为3个特殊区间,证明了带有更弱位势函数的一类Sobolev空间紧嵌入定理。有效地解决了带有位势函数的椭圆偏微分方程解的存在性因工作空间失去紧性所产生的困难。
Abstract:
The H?lder interpolating inequality was used to prove that the Sobolev compact imbedding theorem holds if and only if the bounded sequence has some strong converge sequence for some Lp(RN). By the properties of the weaker potential function, the compact imbedding theorem on the bound domain along with three special partitions of the entire space, the compact imbedding theorem was verified for some kind of Sobolev space with weaker potential function. And such a theorem could be useful for the study of the existence of a solution for some type of the elliptic equations which possess this kind of potential function when compactness for the functional space fails.

参考文献/References:

[1] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Heidelberg: Springer, 1998.[2] ADAMS R, FOURNIER J. Sobolev space[M]. 2nd ed. Singapore: Elsevier, 2009. [3] LIU C, ZHENG Y. Existence of nontrivial solutions for p-Laplacian equations in RN[J]. Journal of Mathematical Analysis and Applications, 2011, 380: 669-679.[4] LIU Z, WANG Z. On the Ambrosetti-Rabinowitz superlinear condition[J]. Advanced Nonlinear Studies, 2004, 4(4) : 563-574.[5] 郭玉霞, 唐仲伟, 汪路顺. 带深井位势双调和方程的解[J]. 中国科学(数学), 2019, 49(1): 21-38.[6] ZOU W, SCHECHTER M. Critical point theory and its applications[M]. New York: Springer, 2006.[7] BARTSCH T, WANG Z. Existence and multiplicity results for some superlinear elliptic problems on RN[J]. Communications in Partial Differential Equations, 1995, 20(9/10) : 1725-1741.[8] BARTSCH T, PANKOV A, WANG Z. Nonlinear schrdinger equations with steep potential well[J]. Communications in Contemporary Mathematics, 2001, 3(4) : 549-569.[9] AUTUORI G, PUCCI P. Existence of entire solutions for a class of quasilinear elliptic equations[J]. Nonlinear Differential Equations and Applications, 2013, 20(3) : 977-1009.

更新日期/Last Update: 2021-02-25