[1]陈海贝、常菊、郑嘉唯.基于多元回归的我国建筑业总产值影响因素分析[J].福建工程学院学报,2019,17(04):343-351.[doi:10.3969/j.issn.1672-4348.2019.04.007]
 CHEN Haibe,CHANG Ju,ZHENG Jiawei.Analysis of influencing factors of the gross output value of the construction industry in China based on multiple regression[J].Journal of FuJian University of Technology,2019,17(04):343-351.[doi:10.3969/j.issn.1672-4348.2019.04.007]
点击复制

基于多元回归的我国建筑业总产值影响因素分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年04期
页码:
343-351
栏目:
出版日期:
2019-08-25

文章信息/Info

Title:
Analysis of influencing factors of the gross output value of the construction industry in China based on multiple regression
作者:
陈海贝、常菊、郑嘉唯
淮北师范大学
Author(s):
CHEN Haibe CHANG Ju ZHENG Jiawei
School of Economics and Management, Huaibei Normal University
关键词:
建筑业总产值面板数据多元回归
Keywords:
construction industry gross output value panel data multiple regression
分类号:
F426.92
DOI:
10.3969/j.issn.1672-4348.2019.04.007
文献标志码:
A
摘要:
以1998-2016年全国31个区域建筑业的面板数据为样本,采用多元回归模型,对全国和各省建筑业发展的影响因素进行实证分析。结果表明,劳动力生产率、建筑企业单位数和机械设备总功率等因素对建筑业的影响是正向的,而从业人员的技能制约了建筑业的发展。新时代我国应该加快技术突破和人才培养,并提供政策支持,以推动中国建筑业的新一轮崛起。
Abstract:
Based on the panel data of 31 regions in China from 1998 to 2016, an empirical analysis was conducted on the influencing factors of the development of the construction industry in the whole country and individual provinces by using the multiple regression model. Results show that such factors as labor productivity, the number of construction enterprises and the total power of machinery and equipment have positive impacts on the construction industry, while the skills of the practitioners restrict the development of the construction industry. In the new era, China should accelerate technological breakthroughs and talent training, and provide policy support to promote a new round of rise of China’s construction industry.

参考文献/References:

[1] 国务院办公厅关于促进建筑业持续健康发展的意见[J]. 建筑设计管理, 2017, 34(4): 26-28, 34.[2] 向鹏成, 谢怡欣, 李宗煜. 低碳视角下建筑业绿色全要素生产率及影响因素研究[J]. 工业技术经济, 2019, 38(8): 57-63.[3] 王旭, 冯建浩, 马齐如. 基于DEA-Tobit方法的东北三省建筑业可持续发展效率分析[J]. 土木工程与管理学报, 2017, 34(3): 8-12.[4] 廖玉平, 姚兵, 刘伊生. 基于SCP的转轨时期我国建筑业市场绩效研究[J]. 土木工程学报, 2011, 44(4): 142-146.[5] 张淼, 覃亚伟, 刘佳静. 基于TOPSIS与灰色关联分析的区域建筑业可持续发展评价[J]. 土木工程与管理学报2018, 35(4): 189-193.[6] 杨帆, 李小冬, 宋子阳. 建筑业从业人员工作倦怠研究综述[J]. 工程管理学报, 2017, 31(2): 1-6.[7] 陈奕林, 尹贻林, 钟炜. BIM技术创新支持对建筑业管理创新行为影响机理研究: 内在激励的中介作用[J]. 软科学, 2018, 32(11): 69-72.[8] 孔凡文, 姜美月. 基于DEA模型的辽宁省建筑业技术效率分析[J]. 沈阳建筑大学学报(社会科学版) , 2019, 21(3): 252-256.[9] 陈钢, 祁神军, 张云波, 等. 基于广义DEA的建筑业区域碳排放效率评价[J]. 资源开发与市场, 2017, 33(3): 327-333.[10] MAKKINGA R, GRAAF R, VOORDIJK H. Successful verification of subcontracted work in the construction industry[J]. Systems Engineering, 2018, 21(2): 131-140.[11] SEPASGOZAR S, DAVIS S, LOOSEMORE M, et al. An investigation of modern building equipment technology adoption in the Australian construction industry[J]. Engineering, Construction and Architectural Management, 2018, 25(8): 1075-1091.[12] KARUNAKARAN P, ABDULLAH A, NAGAPAN S, et al. Categorization of potential project cost overrun factors in construction industry[J]. IOP Conference Series: Earth and Environmental Science, 2018, 140: 012098.[13]RATNASINGAM J, LATIB H, NG W, et al. Preference of using wood and wood products in the construction industry in peninsular malaysia[J]. BioResources, 2018, 13(3): 5289-5302.[14] WINGE S, ALBRECHTSEN E. Accident types and barrier failures in the construction industry[J]. Safety Science, 2018, 105: 158-166.

相似文献/References:

[1]陈哲,陈群.技术进步对建筑业增长贡献率测算[J].福建工程学院学报,2013,11(06):596.

更新日期/Last Update: 2019-08-25