[1]吴展鸿、周铭标、陈学军.杯状电极下大电流故障燃弧仿真分析[J].福建工程学院学报,2019,17(03):267-271.[doi:10.3969/j.issn.1672-4348.2019.03.011]
 WUZhanhong,ZHOU Mingbiao,CHEN Xuejun.Simulation of large current fault arc under cup electrode[J].Journal of FuJian University of Technology,2019,17(03):267-271.[doi:10.3969/j.issn.1672-4348.2019.03.011]
点击复制

杯状电极下大电流故障燃弧仿真分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年03期
页码:
267-271
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Simulation of large current fault arc under cup electrode
作者:
吴展鸿、周铭标、陈学军
莆田学院机电工程学院
Author(s):
WUZhanhongZHOU MingbiaoCHEN Xuejun
School of Mechanical & Electrical Engineering
关键词:
故障燃弧数值仿真杯状电极
Keywords:
fault arcing numerical simulation cup electrode
分类号:
TM561
DOI:
10.3969/j.issn.1672-4348.2019.03.011
文献标志码:
A
摘要:
基于磁流体动力学模型完成了直流10kA大电流电弧的仿真计算,获得杯状电极间电弧的温度、气压、电弧电压和气流场速度的分布参数,分析出杯状电极间电弧的发展过程与稳定燃弧状态。结果表明,电极间电弧经历电弧膨胀和稳定燃烧两个阶段,电弧最终稳定在电极间燃烧而不向外部运动。通过对比实验数据与仿真数据,验证了仿真的准确性与有效性。
Abstract:
A high current arc of 10 kA direct-current was simulated based on the magneto hydrodynamics mode, obtaining the distribution parameters of temperature, gas pressure, arc voltage and airflow field velocity of the arc between cup electrodes. The development process of arc between cup electrodes and its stable arcing state were analyzed on the basis of the above data. Studies show that arc between electrodes underwent two stages: arc expansion and stable combustion, and finally kept burning between electrodes instead of moving outward. The accuracy and effectiveness of the simulation model were verified through comparison of experimental data and simulation data.

参考文献/References:

[1]袁端磊, 王海燕, 杨芳, 等. 电极烧蚀对密闭容器内空气故障电弧的影响[J]. 高压电器, 2018, 54(9): 38-42.[2] 〖JP3〗石磊, 董博, 尹洪泉, 等. 电弧烧蚀对高压电器用铜钨合金组织和性能的影响[J]. 铸造技术, 2018, 39(8): 1850-1852.[3] MURPHY A B, BOULOS M I, COLOMBO V, et al. Advanced thermal plasma modelling[J]. High Temperature Material Processes (an International Quarterly of High-Technology Plasma Processes), 2008, 12(3/4): 255-336[4] GLEIZES A, GONZALEZ J, FRETON P. Thermal plasma modelling[J]. Journal of Physics D: Applied Physics, 2005, 38(9): R153-R183.[5] 吴翊, 荣命哲, 杨茜, 等. 低压空气电弧动态特性仿真及分析[J]. 中国电机工程学报, 2005, 25(21): 143-148.[6] 杨茜, 荣命哲, 吴翊. 低压断路器中空气电弧运动的仿真及实验研究[J]. 中国电机工程学报, 2006, 26(15): 89-94. [7] YANG F, MA R G, WU Y, et al. Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. [8] LI Y, YANG F, RONG M, et al. Numerical simulation of self-excited oscillation switching current in HVDC MRTB[J]. High Voltage Engineering, 2013, 39(10): 2547-2552. [9] GONZALEZ J J, FRETON P, REICHERT F, et al. Turbulence and magnetic field calculations in high-voltage circuit breakers[J]. IEEE Transactions on Plasma Science, 2012, 40(3): 936-945.[10] 陈喆歆, 吴翊, 杨飞, 等. 低压断路器电弧仿真研究[J]. 电器与能效管理技术, 2014(10): 10-17.

更新日期/Last Update: 2019-06-25