[1]林美丽,袁正中,蔡建平.带有不确定性异结构混沌系统的有限时间同步[J].福建工程学院学报,2019,17(01):77-82.[doi:10.3969/j.issn.1672-4348.2019.01.014]
 LIN Meili,YUAN Zhengzhong,CAI Jianping.Finite-time synchronization between two different chaotic systems with uncertainties[J].Journal of FuJian University of Technology,2019,17(01):77-82.[doi:10.3969/j.issn.1672-4348.2019.01.014]
点击复制

带有不确定性异结构混沌系统的有限时间同步()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第17卷
期数:
2019年01期
页码:
77-82
栏目:
出版日期:
2019-02-25

文章信息/Info

Title:
Finite-time synchronization between two different chaotic systems with uncertainties
作者:
林美丽袁正中蔡建平
福建工程学院 数理学院
Author(s):
LIN Meili YUAN Zhengzhong CAI Jianping
Mathematics and Physics Institute, Fujian University of Technology
关键词:
有限时间同步异结构混沌系统虚拟未知参数
Keywords:
finite-time synchronization different chaotic systems virtual unknown parameters
分类号:
O231.2
DOI:
10.3969/j.issn.1672-4348.2019.01.014
文献标志码:
A
摘要:
研究带有未知参数和外界扰动的异结构混沌系统有限时间同步,采用自适应控制方法实现系统的有限时间同步,引入虚拟未知参数有效地避免控制器和参数更新率中出现系统未知参数问题。通过数值仿真验证了该方法的有效性。
Abstract:
The finite-time synchronization of two different chaotic systems with unknown parameters and external disturbances was studied. The adaptive control method was used to realize the finite-time synchronization of the system. Virtual unknown parameters were introduced in order to avoid the unknown parameters from appearing in the controllers and parameters update rate. Numerical simulations verified the effectiveness of the method.

参考文献/References:

[1] ZHANG R M, ZENG D Q, ZHONG S M, et al. New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems [J]. Nonlinear Analysis: Hybrid SystemsH, 2018, 29: 303-321.[2] TAO C H, XIONG H X, HU F. Two novel synchronization criterions for a unified chaos system [J]. Chaos, Solitons and Fractals, 2006, 27: 115-120.[3] ZENG D, WU K T, LIU Y, et al. Event-triggered sampling control for exponential synchronization of chaotic Lur’e systems with time-varying communication delays [J]. Nonlinear Dynamics, 2018, 91(2): 905-921.[4] 〖JP3〗YASSEN M T. Adaptive synchronization of two different uncertain chaotic systems [J]. Physics Letter A, 2005, 337: 335-341.〖JP〗[5] LI S H, TIAN Y P. Finite time synchronization of chaotic systems [J]. Chaos, Solitons and Fractals, 2003, 15: 303-310.[6] LI J, QIAN C J. Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems [J]. IEEE Transactions on Automatic Control, 2006, 51: 879-884.[7]CAI N, LI W Q, JING Y W. Finite-time generalized synchronization of chaotic systems with different order [J]. Nonlinear Dynamics, 2011, 64: 385-393.[8] PERRUQUETTI W, FLOQUENT T, MOULAY E. Finite-time observers: application to secure communication [J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356-360.[9] HONG Y G, YANG G U, BUSHNELL L, et al. Global finite-time stabilization: from state feedback to output feedback [C]//39th IEEE Conference on Decision and Control. Sydney: [s.n.], 2000: 2908-2913.[10] LIU Y J. Circuit implementation and finite-time synchronization of the 4D rabinovich hyperchaotic system [J]. Nonlinear Dynamics, 2012, 67: 89-96.[11] VINCENT U E, GUO R. Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller [J]. Physics Letters A, 2011, 375: 2322-2326.[12] ZHANG D Y , MEI J, MIAO P. Global finite-time synchronization of different dimensional chaotic systems [J]. Applied Mathematical Modelling, 2017, 48: 303-315.[13] AMATO F, ARIOLA M, DORATO P. Finite-time control of linear systems subject to parametric uncertainties and disturbances [J]. Automatica, 2001, 37: 1459-1463.[14] GAO T G, CHEN Z Q, CHEN G R, et al. Finite-time control of chaotic systems with nonlinear imputs [J]. Chinese Physics, 2006, 15: 1190-06.[15] WANG H, HAN Z Z, XIE Q Y, et al. Finite-time chaos synchronization of unified chaotic system with uncertain parameters [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 2239-2247.[16] SUN Y H, WU X P, BAI L Q, et al, Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor [J]. Neurocomputing, 2016, 207: 511-518.[17] YANG Y Q , WU X F. Global finite-time synchronization of a class of the non-autonomous chaotic systems [J]. Nonlinear Dynamics, 2012, 70(1): 197-208.[18] HALE J K. Ordinary differential equations [M]. Huntington: Krieger, 1969.[19] BACCIOTTI A, ROSIER L. Liapunov functions and stability in control theory [M]. New York: Springer-Verlag, 2005.[20] WU J, MA Z C, SUN Y Z, et al. Finite-time synchronization of chaotic systems with noise perturbation [J]. Kybernetika, 2015, 51(1): 137-149.[21] GE Z E, CHEN J W. Chaos synchronization and parameter identification of three time scales brushless DC motor system [J]. Chaos, Solitons and Fractals, 2005, 24: 597-616.[22] YAN J J, LIN J S, LIAO T L. Synchronization of a modified Chua’s circuit system via adaptive sliding mode control [J]. Chaos, Solitons and Fractals, 2008, 36: 45-52.[23] GENESIO R, TESI A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems[J]. Automatica, 1992, 28(3): 531-548.

相似文献/References:

[1]林致睿,李建兴,石宇静,等.永磁同步电动机网络有限时间PD同步控制[J].福建工程学院学报,2023,21(04):385.[doi:10.3969/j.issn.1672-4348.2023.04.012]
 LIN Zhirui,LI Jianxing,SHI Yujing,et al.Finite-time PD synchronous control for permanent magnet synchronous motor network[J].Journal of FuJian University of Technology,2023,21(01):385.[doi:10.3969/j.issn.1672-4348.2023.04.012]

更新日期/Last Update: 2019-02-25