参考文献/References:
[1] ZHANG R M, ZENG D Q, ZHONG S M, et al. New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems [J]. Nonlinear Analysis: Hybrid SystemsH, 2018, 29: 303-321.[2] TAO C H, XIONG H X, HU F. Two novel synchronization criterions for a unified chaos system [J]. Chaos, Solitons and Fractals, 2006, 27: 115-120.[3] ZENG D, WU K T, LIU Y, et al. Event-triggered sampling control for exponential synchronization of chaotic Lur’e systems with time-varying communication delays [J]. Nonlinear Dynamics, 2018, 91(2): 905-921.[4] 〖JP3〗YASSEN M T. Adaptive synchronization of two different uncertain chaotic systems [J]. Physics Letter A, 2005, 337: 335-341.〖JP〗[5] LI S H, TIAN Y P. Finite time synchronization of chaotic systems [J]. Chaos, Solitons and Fractals, 2003, 15: 303-310.[6] LI J, QIAN C J. Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems [J]. IEEE Transactions on Automatic Control, 2006, 51: 879-884.[7]CAI N, LI W Q, JING Y W. Finite-time generalized synchronization of chaotic systems with different order [J]. Nonlinear Dynamics, 2011, 64: 385-393.[8] PERRUQUETTI W, FLOQUENT T, MOULAY E. Finite-time observers: application to secure communication [J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356-360.[9] HONG Y G, YANG G U, BUSHNELL L, et al. Global finite-time stabilization: from state feedback to output feedback [C]//39th IEEE Conference on Decision and Control. Sydney: [s.n.], 2000: 2908-2913.[10] LIU Y J. Circuit implementation and finite-time synchronization of the 4D rabinovich hyperchaotic system [J]. Nonlinear Dynamics, 2012, 67: 89-96.[11] VINCENT U E, GUO R. Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller [J]. Physics Letters A, 2011, 375: 2322-2326.[12] ZHANG D Y , MEI J, MIAO P. Global finite-time synchronization of different dimensional chaotic systems [J]. Applied Mathematical Modelling, 2017, 48: 303-315.[13] AMATO F, ARIOLA M, DORATO P. Finite-time control of linear systems subject to parametric uncertainties and disturbances [J]. Automatica, 2001, 37: 1459-1463.[14] GAO T G, CHEN Z Q, CHEN G R, et al. Finite-time control of chaotic systems with nonlinear imputs [J]. Chinese Physics, 2006, 15: 1190-06.[15] WANG H, HAN Z Z, XIE Q Y, et al. Finite-time chaos synchronization of unified chaotic system with uncertain parameters [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 2239-2247.[16] SUN Y H, WU X P, BAI L Q, et al, Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor [J]. Neurocomputing, 2016, 207: 511-518.[17] YANG Y Q , WU X F. Global finite-time synchronization of a class of the non-autonomous chaotic systems [J]. Nonlinear Dynamics, 2012, 70(1): 197-208.[18] HALE J K. Ordinary differential equations [M]. Huntington: Krieger, 1969.[19] BACCIOTTI A, ROSIER L. Liapunov functions and stability in control theory [M]. New York: Springer-Verlag, 2005.[20] WU J, MA Z C, SUN Y Z, et al. Finite-time synchronization of chaotic systems with noise perturbation [J]. Kybernetika, 2015, 51(1): 137-149.[21] GE Z E, CHEN J W. Chaos synchronization and parameter identification of three time scales brushless DC motor system [J]. Chaos, Solitons and Fractals, 2005, 24: 597-616.[22] YAN J J, LIN J S, LIAO T L. Synchronization of a modified Chua’s circuit system via adaptive sliding mode control [J]. Chaos, Solitons and Fractals, 2008, 36: 45-52.[23] GENESIO R, TESI A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems[J]. Automatica, 1992, 28(3): 531-548.