[1]佟瑞菊,袁玉珠.北大西洋大型常见冷水柳珊瑚潜在分布建模[J].福建工程学院学报,2017,15(04):393-398.[doi:10.3969/j.issn.1672-4348.2017.04.017]
 Tong Ruiju,Yuan Yuzhu.Distribution modelling of large common cold-water gorgoninans in North Atlantic[J].Journal of FuJian University of Technology,2017,15(04):393-398.[doi:10.3969/j.issn.1672-4348.2017.04.017]
点击复制

北大西洋大型常见冷水柳珊瑚潜在分布建模()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第15卷
期数:
2017年04期
页码:
393-398
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Distribution modelling of large common cold-water gorgoninans in North Atlantic
作者:
佟瑞菊袁玉珠
福建工程学院交通运输学院
Author(s):
Tong Ruiju Yuan Yuzhu
School of Transportation, Fujian University of Technology
关键词:
冷水柳珊瑚 潜在分布建模 随机森林模型 最大熵模型
Keywords:
cold-water gorgonians potential distribution modelling random forest (RF) model MaxEnt
分类号:
Q141
DOI:
10.3969/j.issn.1672-4348.2017.04.017
文献标志码:
A
摘要:
Paragorgia arborea及Primnoa resedaeformis是北大西洋最常见的两类大型冷水柳珊瑚,该两种柳珊瑚显著增加了底栖环境的生境复杂度。其分布信息对资源管理及保护极其重要,但难以获取。本文基于随机森林模型及最大熵模型预测其在北大西洋Traena区域的潜在分布。预测精度评价表明随机森林模型较最大熵模型具有更好的预测性能。平均曲率(90 m尺度)是随机森林模型预测两种柳珊瑚分布的主导因子,表明其与两种柳珊瑚的分布具有较强生态相关性。预测结果显示两种柳珊瑚趋向于分布在珊瑚礁体上。本预测成果可为该区域冷水珊瑚保护提供决策辅助信息。模型对比研究可为大型底栖动物分布建模的模型选择提供依据。
Abstract:
Paragorgia arborea and Primnoa resedaeformis are two large coldwater coral species commonly occurring in North Atlantic, which significantly increase the complexity of the benthic habitat. Mapping their distribution is fundamental for resource management and conservation, but is difficult (given their remoteness). In this study, their potential distribution at Traena Reef complex of the North Atlantic were predicted based on random forest (RF) and MaxEnt models, respectively. The RF prediction was shown to outperform the MaxEnt prediction. Mean curvature at an analysis scale of 90 m is the most useful terrain variable in RF prediction, which is ecologically correlated to the distribution of the two species. The two species were predicted to occur on the reefs. The result can contribute to cold-water coral protection at the study area. Comparing model performances is useful to provide for distribution modelling of large benthic species.

参考文献/References:

[1] Kutti T, Bergstad O A, Foss J H, et al. Cold-water coral mounds and sponge-beds as habitats for demersal fish on the Norwegian shelf[J].Deep-Sea Res Pt II,2014,99:122-133.
[2] Freiwald A, Huehnerbach V, Lindberg B, et al. The Sula feef complex, Norwegian shelf[J].Facies,2002,47:179-200.
[3] Foss J H, Skjoldal H R. Conservation of coldwater coral reefs in Norway[M]. New York: Oxford University Press,2010,215-240.
[4] Fabri M C, Pedel L, Beuck L, et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts[J].Deep-Sea Res Pt II,2014,104:184-207.
[5] Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J].Divers Distrib,2011,17:43-57.
[6] Huang Z, Brooke B, Li J. Performance of predictive models in marine benthic environments based on predictions of sponge distribution on the Australian continental shelf[J].Ecol Inform,2011(6):205-216.
[7] Rengstorf A M, Yesson C, Brown C, et al. Highresolution habitat suitability modelling can improve conservation of vulnerable marine ecosystems in the deep sea[J].J Biogeogr,2013,40:1702-1714.
[8] 李国庆,刘长成,刘玉国,等.物种分布模型理论研究进展[J].生态学报,2013,33(16):4827-4835.
[9] 许仲林,彭焕华,彭守璋.物种分布模型的发展及评价方法[J].生态学报,2015,35(2):557-567.
[10] 杨若男,盛炎平.应用于物种分布模型的多种算法[J].大学教育,2016(5):120-121.
[11] 刘芳,李晟,李迪强.利用分布有/无数据预测物种空间分布的研究方法综述[J].生态学报,2013,33(22):7047-7057.
[12] 桑满杰,卫海燕,毛亚娟,等.基于随机森林的我国荞麦适宜种植区划及评价[J].山东农业科学,2015(7):46-52.
[13] 张雷,王琳琳,张旭东,等.随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J].生态学报,2014,34(3):650-659.
[14] 毕迎凤,许建初,李巧宏,等.应用BioMod 集成多种模型研究物种的空间分布——以铁杉在中国的潜在分布为例[J].植物分类与资源学报,2013,5(5):647-655.
[15] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-37.
[16] Breiman L. Random forests[J]. Mach Learn,2001,45:5-32.
[17] 张雷,王琳琳,张旭东,等.随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J].生态学报,2014,34(3):650-659.
[18] Peters J, Baets B D, Verhoest N E C, et al. Random forests as a tool for ecohydrological distribution modeling[J].Ecol Model,2007,207:304-318.
[19] Cutler D R, Edwards T C Jr, Beard K H, et al. Random forests for classification in ecology[J]. Ecol,2007,88(11):2783-2792.

更新日期/Last Update: 2017-08-25