[1]林梅彬,郑蔚涛.斜齿轮副结构参数灵敏度分析[J].福建工程学院学报,2017,15(04):328-332.[doi:10.3969/j.issn.1672-4348.2017.04.005]
 Lin Meibin,Zheng Weitao.Analysis of the parameter sensitivity of helical gear pairs[J].Journal of FuJian University of Technology,2017,15(04):328-332.[doi:10.3969/j.issn.1672-4348.2017.04.005]
点击复制

斜齿轮副结构参数灵敏度分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第15卷
期数:
2017年04期
页码:
328-332
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Analysis of the parameter sensitivity of helical gear pairs
作者:
林梅彬郑蔚涛
福州职业技术学院交通工程系
Author(s):
Lin Meibin Zheng Weitao
Transportation Engineering Department, Fuzhou Polytechnic (Institute of Technology)
关键词:
非线性 齿轮系统 刚度 阻尼 灵敏度
Keywords:
nonlinearity gear system stiffness damping sensitivity
分类号:
TH113.1;TH132.41
DOI:
10.3969/j.issn.1672-4348.2017.04.005
文献标志码:
A
摘要:
以机械传动系统中的斜齿轮啮合为研究对象,在考虑时变刚度、齿侧间隙和啮合误差的情况下,建立了十自由度斜齿轮非线性振动数学模型。以斜齿轮结构参数作为灵敏度分析参数,采用数值分析方法分别研究了斜齿轮系统振动加速度均方根值对齿轮质量、支撑刚度和支撑阻尼的灵敏度。结果表明:主、被动轮横向(y向)振动对各参数敏感度较低,横向振动(x向)与被动轮扭转振动对质量参数、刚度参数、阻尼参数较为敏感,被动轮扭转振动受到阻尼的影响很大,灵敏度在扭转振动固有频率处变化较大。
Abstract:
A nonlinear vibration mathematical model of ten degrees of freedom of a helical gear system was established, in which time-varying meshing stiffness, backlash and meshing errors were considered. The structural parameters of the helical gear were employed as the parameters of sensitivity analysis to investigate the vibration acceleration square root value sensitivity of the helical gear system to gear mass, stiffness of bearing pedestal and damping via numerical analysis method. The results show that the horizontal vibration and driven gear tortional vibration are more sensitive to the parameters of the gear, mass, stiffness,while the tortional vibration of the driven gear is sensitive to the damping with the sensitivity varying considerably at the natural frequency of torsional vibration.

参考文献/References:

[1] 张策,机械动力学[M].北京:高等教育出版社,2008.
[2] Hamed M,Hassan S. Analysis of nonlinear oscillations in spur gear pairs with approximated modeling of backlash nonlinearity[J].Mechanism and Machine Theory, 2012,51:14-31.
[3] 魏静,孙伟,秦大同,等.基于改进的弯-扭-轴-摆耦合模型的斜齿轮动态特性及非线性因素影响分析[J].机械工程学报,2011,47:1-9.
[4] Lassad W,Tahar F,Mohamed H.Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation,bearing flexibility and backlash[J].Mechanism and Machine Theory,2009,44(5):1058-1069.
[5] Arsham H.Perturbation analysis of general lP models: A unified approach to sensitivity, parametric tolerance, and more-for-less analysis[J].Mathematical and Computer Modelling,1990(12):1437-1446.
[6] Ramakrishnan C V, Francavilla A. Structural optimization using penalty functions[J].J Struct Mech, 1974(3):403-422.
[7] Wang S Y, Sun Y, Gallagher R H. Sensitivity analysis in shape optimization of continuum structures[J].Comp and Struct,1985,20:855-867.
[8] 安宗文, 辛玉.基于重要抽样法的风电齿轮箱齿轮可靠性灵敏度分析[J].兰州理工大学学报,2015,41(3):300-305.
[9] 刘中生,陈塑寰. 齿轮传动系统扭振固有频率对设计参数的灵敏度[J].机械工程学报,1993,29(2):77-83.
[10] 周娜,张义民.圆锥齿轮可靠性分析的参数灵敏度[J].中国机械工程,2008,19(21):2617-2622.
[11] 魏兵,夏明安.齿轮系统减振设计的支承结构灵敏度分析[J].武汉交通科技大学学报,2000,24(3):313-315.
[12] 郭磊. 斜齿轮多间隙非线性耦合系统动力学研究[D].大连:大连理工大学,2010.

更新日期/Last Update: 2017-08-25