[1]施键兰 余赞平.一类带Gilpin-Ayala增长率的时滞计算机病毒模型[J].福建工程学院学报,2017,15(03):301-306.[doi:10.3969/j.issn.1672-4348.2017.03.020]
 Shi Jianlan,Yu Zanping.A time delayed computer virus model with Gilpin-Ayala growth rate[J].Journal of FuJian University of Technology,2017,15(03):301-306.[doi:10.3969/j.issn.1672-4348.2017.03.020]
点击复制

一类带Gilpin-Ayala增长率的时滞计算机病毒模型()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第15卷
期数:
2017年03期
页码:
301-306
栏目:
出版日期:
2017-06-25

文章信息/Info

Title:
A time delayed computer virus model with Gilpin-Ayala growth rate
作者:
施键兰 余赞平
福建农林大学东方学院
Author(s):
Shi Jianlan Yu Zanping
Dongfang College, Fujian Agriculture and Forestry University
关键词:
计算机病毒 Gilpin-Ayala增长率 稳定性 Hopf分岔时滞
Keywords:
computer virus Gilpin-Ayala growth rate stability Hopf bifurcation time delay
分类号:
TP309.5
DOI:
10.3969/j.issn.1672-4348.2017.03.020
文献标志码:
A
摘要:
研究了一类带Gilpin-Ayala增长率的时滞计算机网络病毒传播模型。通过分析模型特征方程及考虑时滞对系统动力学行为的影响,得到模型的平衡点稳定及 Hopf 分岔产生的条件。数值模拟验证出所得理论分析结果的正确性。
Abstract:
In this paper,a time-delay viral infection model in computer networks with Gilpin-Ayala growth rate was investigated.By analysing the associated characteristic equation and the impact of the time delay on the dynamical behaviour of a system,the conditions of equilibrium stability and the production of Hopf bifurcation were obtained.Numerical simulations confirm the theoretical results

参考文献/References:

[1] Kephart J O,White S R.Directed graph epidemiological model of computer viruses[C]∥Proceedings of the IEEE Symposium on Security and Privacy, May 20-23,1991, Oakland, California, USA. Washington D C: IEEE Computer Society,1991.
[2] 盖绍婷,唐功友, 于浩.带有免疫的计算机病毒传播模型的稳定性[J].中国海洋大学学报(自然科学版),2013,43(10):110-114.
[3] 杨茂斌,杨小帆,祝清意.具有分级感染率的4仓室计算机病毒传播模型[J].重庆大学学报,2012,35(12):112-119.
[4] 张道祥, 李 迅.非连续免疫策略对计算机病毒SIR模型的影响[J].应用科学学报,2016,34(3):329-338.
[5] 陈旭辉,李尘,柯铭.一类具有个体差异性和非近邻传播特性的SIRS计算机病毒传播模型[J].计算机应用与软件,2013,30(5):15-19.
[6] 胡宝安,李兵,李亚玲.具有时滞的SIR计算机病毒传播模型[J].计算机工程,2016,42(5):168-172.
[7] 李君.具有密度依赖和有限抗病毒能力的计算机病毒模型的前向与后向分支[J].中山大学学报(自然科学版),2016,55(1):35-38.
[8] Ren J, Yang X, Zhu Q. A novel computer virus model and its dynamics[J]. Nonlinear Analysis: Real World Applications,2012,13(1):376-384.
[9] Fan M, Wang K. Periodic solutions of a generalized n-species Gilpin-Ayala competition model[J]. Computers and Mathematics with Applications,2000,40(10):1141-1151.〖ZK)〗
[10] Hale J K, Verduyn L S. Introduction to Functional Differential equations[M].New York:SpringerVerlag,1993.

更新日期/Last Update: 2017-06-25