[1]戴福全,阮玉镇.两轮自平衡机器人的滑模控制方法研究[J].福建工程学院学报,2016,14(04):376-381.[doi:10.3969/j.issn.1672-4348.2016.04.013]
 Dai Fuquan,Ruan Yuzhen.The control technology of two-wheeled self-balancing robot based on sliding mode control[J].Journal of FuJian University of Technology,2016,14(04):376-381.[doi:10.3969/j.issn.1672-4348.2016.04.013]
点击复制

两轮自平衡机器人的滑模控制方法研究()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年04期
页码:
376-381
栏目:
出版日期:
2016-08-25

文章信息/Info

Title:
The control technology of two-wheeled self-balancing robot based on sliding mode control
作者:
戴福全阮玉镇
福建工程学院机械与汽车工程学院
Author(s):
Dai Fuquan Ruan Yuzhen
College of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
两轮自平衡机器人 动力学控制 滑模控制方法 动力学仿真
Keywords:
two-wheeled self-balancing robot dynamic control sliding mode control dynamic simulation
分类号:
TH113.2
DOI:
10.3969/j.issn.1672-4348.2016.04.013
文献标志码:
A
摘要:
基于拉格朗日函数法建立了机器人的动力模型,并基于滑模控制方法设计了机器人的鲁棒控制器,实现了机器人的平衡、转向和行走等控制任务。滑模控制器是一种鲁棒控制方法,当进入滑模态后,控制能够保证机器人在外力干扰和参数变化等情况下依旧保持控制性能。通过MATLAB和ADAMS联合仿真环境,控制器的控制效果得到了验证,证明了所设计的控制方法是可行的,能够达到所要求的控制性能。
Abstract:
A dynamic robot model was established based on the Lagrangian function method and a robot robust sliding mode controller was designed to enable the control of the robot balance, steering and walking. The sliding mode controller belongs to robust control method that can maintain the control performance of the robot under external disturbances and parameter variation. The control effect of the robot controller was verified via the joint simulation of MATLAB and ADAMS, which indicates that the method presented is feasible and effective.

参考文献/References:

[1] Lin S C, Tsai C C, Huang H C. Adaptive robustselfbalancing and steering of a twowheeled human transportation vehi-cle[J]. Journal of Intelligent & Robotic Systems,2011,62 (1):103-123.
[2] Peng Y F, Chiu C H. The implementation of wheeled robot using adaptive output recurrent CMAC[C]//Proceedings of 2008 IEEE International Joint Conference on Neural Networks. Hong Kong: IEEE,2008,1(8):2942-2947.
[3] Sawatzky B, Denison I, Tawashy A. The Segway for people with disabilities[J]. American Journal of Physical Medicine & Rehabilitation,2009,88:484-90.
[4] Dai F Q,Li F X, Bai Y, et al. Development of a coaxial self-balancing robot based onsliding mode control[C]// Proceedings of 2012 International Conference on InMechatronics and Automation (ICMA). Chengdu: IEEE,2012:1241-1246.
[5] 段旭东,魏衡华,陈星.基于DSP的二轮小车-倒立摆系统[J].控制工程,2004,11(6):4-8.
[6] 杨兴明,丁学明,张培仁, 等.两轮移动式倒立摆的运动控制[J].合肥工业大学学报(自然科学版) ,2005,28(11):1485-1488.
[7] Lin S C, Tsai C C. Development of a self-balancing human transportation vehicle for theteaching of feedback control[J].IEEE Transactions on Education,2009,52(1):157-168.
[8] Solis J, Nakadate R,Yoshimura Y, et al. Development of the two-wheeled inverted pendulum typemobile robot WV-2R for educational purposes[C]//Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE,2009:2347-2352.
[9] Grasser F, D’Arrigo A, Colombi S, et al. JOE: a mobile, inverted pendulum[J]. IEEE Transactions on Industrial Electronics,2002,49 (1):107-114.
[10] Babazadeh R, Khiabani A G, Azmi H. Optimal control of Segway personal transporter[C]// Proceedings of 2016 4th International Conference on Control,Instrumentation, and Automation (ICCIA). Qazvin: IEEE,2016:18-22.
[11] Tsai C C, Ju S Y, Hsieh S M, et al. Trajectory tracking of a self-balancing two-wheeledrobot using backstepping sliding-mode control and fuzzy basis function networks[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Taibei:IEEE,2010:3943-3948.
[12] Li C Q, Gao XS, Huang Q, et al. A coaxial couple wheeled robot with T-S fuzzyequilibrium control[J]. Industrial Robot,2011,38:292-300.
[13] Huang J, Guan Z H, Matsuno T, et al. Slidingmode velocity control of mobile-wheeledinverted-pendulum systems[J]. IEEE Transactions on Robotics,2010,26 (4):750-758.
[14] Tsai C C, Huang H C, Lin S C. Adaptive neural network control of a self-balancingtwo-wheeled scooter[J]. IEEE Transactions on Industrial Electronics,2010,57(4):1420-1428.
[15] Su K H, Chen Y Y, Su S F. Design of neural-fuzzy-based controller for two autonomouslydriven wheeled robot[J]. Neurocomputing,2010,73(13):2478-2488.

更新日期/Last Update: 2016-08-25