[1]张宋传.一类复变量优化问题的次梯度投影算法[J].福建工程学院学报,2016,14(01):86-89.[doi:10.3969/j.issn.1672-4348.2016.01.019]
 Zhang Songchuan.A complex-valued subgradient projection method (CSPM) for a class of complex variables non-smooth convex optimization problems[J].Journal of FuJian University of Technology,2016,14(01):86-89.[doi:10.3969/j.issn.1672-4348.2016.01.019]
点击复制

一类复变量优化问题的次梯度投影算法()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第14卷
期数:
2016年01期
页码:
86-89
栏目:
出版日期:
2016-02-25

文章信息/Info

Title:
A complex-valued subgradient projection method (CSPM) for a class of complex variables non-smooth convex optimization problems
作者:
张宋传
闽江学院数学系
Author(s):
Zhang Songchuan
Mathematics Department, Minjiang University
关键词:
次梯度 CR微分 复变量优化问题 非光滑
Keywords:
subgradient CR calculus theory complex variables optimization problem non-smoothness
分类号:
O221.2
DOI:
10.3969/j.issn.1672-4348.2016.01.019
文献标志码:
A
摘要:
利用CR微分理论,提出求解一类线性等式约束的复变量非光滑凸优化问题的复值次梯度投影算法(CSPM),该算法能完全基于复域上运行。在较弱的条件下证明了算法的全局收敛性,数值实验进一步表明了CSPM的可行性和有效性,该算法尤其适合大规模优化问题的求解。
Abstract:
A complex-valued subgradient projection method (CSPM) based on CR calculus theory is presented to solve a class of complex variables non-smooth convex optimization problems with linear equality constraints, which can be completely implemented in the complex domain. The proposed method is proved to be globally convergent under mild conditions. Numerical experiments show that CSPM is feasible and effective and suitable for solving large-scale optimization problems.

参考文献/References:

[1] 钟玉泉.复变函数论[M]. 3版.北京:高等教育出版社,2006:54-57.
[2] Kreutz D K. The complex gradient operator and the CR-calculus[EB/OL].2016-01-10.http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%20Files/complex_derivatives.pdf.
[3] Wen J Z, Wen X. Fast estimation of sparse doubly spread acoustic channels[J].Journal of the Acoustical Society of America,2012,131(1):303-317.
[4] Xia Y L, Took C C, Mandic D P. An augmented affine projection algorithm for the filtering of noncircular complex signals[J].Signal Processing,2010,90(6):1788-1799.
[5] Brandwood D H. A complex gradient operator and its applica-tion in adaptive array theory[J].IEE Proceedings of Communications Radar & Signal Processing,1983,130(1):11-16.
[6] Mandic D P, Goh S L. Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models[M]. New York: Wiley,2009:55-68.
[7] 张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:285-296.
[8] Nesterov Y, Shikkman V. Quasi-monotone subgradient methods for nonsmooth convex minimization[J]. Journal of Optimization Theory and Applications, 2015,165(3):917-940.
[9] Nesterov Y. Subgradient methods for huge-scale optimization problems[J].Mathematical Programming,2012,146(1/2):275-297.
[10] Nesterov Y. Primal-dual subgradient methods for convex problems[J].Mathematical Programming,2005,120(1):221-259.
[11] 龙强,李觉友.次梯度法在求解非光滑最优化问题时的计算效果研究[J].重庆师范大学学报(自然科学版),2013,30(6):25-30.
[12] Katsikis V N, Pappas D, Petralias A. An improved method for the computation of the MoorePenrose inverse matrix[J].Applied Mathematics & Computation,2011,217(23):9828-9834.
[13] Grant M, Boyd S. CVX: MATLAB software for disciplined convex programming[EB/OL].2015-12-10,http://cvxr.com/cvx/.

更新日期/Last Update: 2016-02-25