[1]吴琛,项洪,杜喜朋,等.数值方法进展:从Fourier变换到Hilbert-Huang变换[J].福建工程学院学报,2015,13(06):511-519.[doi:10.3969/j.issn.1672-4348.2015.06.001]
 Wu Chen,Xiang Hong,Du Xipeng,et al.The development of numerical methods: From Fourier transform to Hilbert-Huang transform[J].Journal of FuJian University of Technology,2015,13(06):511-519.[doi:10.3969/j.issn.1672-4348.2015.06.001]
点击复制

数值方法进展:从Fourier变换到Hilbert-Huang变换()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第13卷
期数:
2015年06期
页码:
511-519
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
The development of numerical methods: From Fourier transform to Hilbert-Huang transform
作者:
吴琛项洪杜喜朋周瑞忠
福建工程学院土木工程学院
Author(s):
Wu Chen Xiang Hong Du Xipeng Zhou Ruizhong
College of Civil Engineering, Fujian University of Technology
关键词:
Hilbert-Huang变换 边际谱 非平稳信号 稳定性度量 研究进展
Keywords:
Hilbert-Huang transform marginal spectrum non-stationary signal stability measurement research progress
分类号:
TN911.72;TB 123
DOI:
10.3969/j.issn.1672-4348.2015.06.001
文献标志码:
A
摘要:
论述了从Fourier变换,Gabor变换,小波变换,到Hilbert-Huang变换的理论进展与工程应用,比较了Fourier频谱与HHT边际谱的差异,并对非平稳信号的稳定性度量提出了新的指标。最后,介绍和述评了HHT的研究进展和实际应用。
Abstract:
The conversion from Fourier transform, Gabor transform, wavelet transform to Hilbert-Huang transform (HHT)is discussed in theory and engineering applications. The differences between Fourier spectrum and HHT marginal spectrum are compared, and a new stability measure index of nonstationary signals is proposed. Finally, the research progress and applications of HHT are reviewed.

参考文献/References:

[1] 周瑞忠,周小平,吴琛.数值方法进展:从连续介质到离散粒子模型[J].工程力学,2005,22(S0):228-239.
[2] 科恩 L.时频分析:理论与应用[M].白居宪,译.西安:西安交通大学出版社,2000.
[3] Gabor D. Theory of communication (Part Ⅰ): The analysis of information[J]. Journal of the Institution of Electrical Engineers(Part Ⅲ): Radio and Communication Engineering,1946:93(26),429-441.
[4] Mallat E S. A Wavelet Tour of Signal Processing[M]. London: Academic Press, 1999.
[5] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London,1998, A454:903-995.
[6] Huang N E, Wu M, Long S R, et al. A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis[J]. Proceedings of the Royal Society of London, 2003,A459:2317-2345.
[7] 盖强,马孝江,张海勇,等.一种处理局域波法中边界效应的新方法[J].大连理工大学学报,2002,42(1):115-117.
[8] 林丽,周霆,余轮.EMD算法中边界效应处理技术[J].计算机工程,2009,35(23):265-268.
[9] 陈平,李庆民,赵彤.瞬时频率估计算法研究进展综述[J].电测与仪表,2006,43(7):1-6.
[10] De Luig C, Moreau E. An iterative algorithm for estimation of linear frequency modulated signal parameters[J]. IEEE Signal Processing Letters,2002,9(4):127-129.
[11] 孙晖,朱善安.基于过零点-极值点估计的瞬时频率幅度算法[J].电子与信息学报,2006,28(5):905-908.
[12] 韩建平,李达文,王飞行. 基于Hilbert-Huang变换和随机子空间识别的模态参数识别[J].地震工程与工程振动,2010,30(1):53-59.
[13] 付春,姜绍飞,牟海东.基于改进HHT的结构模态参数识别方法[J].应用基础与工程科学学报,2011(4):583-590.
[14] 赵玲,刘小峰,秦树人,等.HHT新方法及其在齿轮箱故障诊断中的应用[J].振动、测试与诊断,2011,31(2):207-211.
[15] 郑近德,程军圣.改进的希尔伯特-黄变换及其在滚动轴承故障诊断中的应用[J].机械工程学报,2015(1):138-145.
[16] 陈文辉,李峰,蔡碧野. 基于快速二维经验模态分解的纹理分割[J].计算机工程与设计,2008,29(15):3960-3962.
[17] Nunes J C. Image analysis by bidimensional empirical mode decomposition[J]. Image and Vision Computing,2003,21(12):1019-1026.
[18] 周振国.二维EMD方法及其在图像处理中的应用研究[D].哈尔滨:哈尔滨工程大学,2012.
[19] 黄海,潘家强.基于Hilbert-Huang变换的基音周期提取方法[J].声学学报,2006,31(1):35-41.
[20] 杨志华,齐东旭,杨力华,等.一种基于HHT的信号周期性分析方法及应用[J].中山大学学报:自然科学版,2005,44(2):14-18.
[21] 闫磊,李永红,杜力力.基于Hilbert-Huang变换基音周期检测算法[J].科技信息,2013(7):203-204.
[22] 杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪方法[J].大地测量与地球动力学,2010,30(3):39-42.
[23] 王利.HHT在脑电信号去噪中的应用[J].信息技术,2014(7):81-83.
[24] Wu Qi, Liu Yibing, Yan Keguo. A new approach to improved HilbertHuang transform[C]// Proceedings of the 6th World Congress on Intelligent Control and Automation. New York: IEEE,2006, 2: 5506-5510.
[25] 吴琛,周瑞忠.基于Hilbert谱的结构动力响应非线性特征分析[J].振动与冲击,2013,32(14):70-76.

相似文献/References:

[1]项洪,吴琛,杜喜朋.基于双重对称延拓的HHT端点效应抑制方法[J].福建工程学院学报,2016,14(04):324.[doi:10.3969/j.issn.1672-4348.2016.04.004]
 Xiang Hong,Wu Chen,Du Xipeng.A dual symmetrical extension method for end effects reduction of Hilbert-Huang transform[J].Journal of FuJian University of Technology,2016,14(06):324.[doi:10.3969/j.issn.1672-4348.2016.04.004]

更新日期/Last Update: 2015-12-25