[1]蒋海斌.可压缩性高n气球模有限拉莫尔半径磁流体理论分析[J].福建工程学院学报,2015,13(01):74-78.[doi:10.3969/j.issn.1672-4348.2015.01.015]
 Jiang Haibin.Finite Larmor radius magnetohydrodynamic analysis of the compressive high n ballooning mode[J].Journal of FuJian University of Technology,2015,13(01):74-78.[doi:10.3969/j.issn.1672-4348.2015.01.015]
点击复制

可压缩性高n气球模有限拉莫尔半径磁流体理论分析()
分享到:

福建工程学院学报[ISSN:2097-3853/CN:35-1351/Z]

卷:
第13卷
期数:
2015年01期
页码:
74-78
栏目:
出版日期:
2015-02-25

文章信息/Info

Title:
Finite Larmor radius magnetohydrodynamic analysis of the compressive high n ballooning mode
作者:
蒋海斌
福建工程学院数理系
Author(s):
Jiang Haibin
Mathematics and Physics Department, Fujian University of Technology
关键词:
气球模 有限拉莫尔半径效应 回旋粘滞
Keywords:
ballooning mode finite Larmor radius effect gyroviscosity
分类号:
O534.2
DOI:
10.3969/j.issn.1672-4348.2015.01.015
文献标志码:
A
摘要:
基于有限拉莫半径磁流体理论(FLR-MHD)模型,采用WKB多重尺度分析方法详细推导一组可用于研究托卡马克等离子体中高n气球模的方程组。在忽略有限拉莫尔半径效应和流体的可压缩后该方程可以回到传统理想气球模方程。该气球模本征方程组可用于研究带流体的压缩性对有限拉莫尔半径修正的高n气球模的影响。
Abstract:
Based on the theory on finite Larmor radius magnetohydrodynamics(FLR-MHD), a set of 6 equations describing the behaviour of high n ballooning modes in Tokamak is derived by using WKB multiscale analysis method. The equations can be reduced to the ideal ballooning mode equation when the FLR effect and compressibility of a fluid is neglected. The results indicate that the present ballooning mode equations can be used to analyse the finite Larmor radius effects (gyroviscosity) on compressive high n ballooning modes.

参考文献/References:

[1] Connor J W, Hastie R J, Taylor J B. Shear, periodicity, and plasma ballooning modes[J].Physical Review Letters,1978,40:396-399.
[2] Coppi B, Rosenbluth M N. Plasma physics and controlled nuclear fusion research[J].IAEA Culham,1965(1):617-641.
[3] Dobrott D, Nelson D B, Greene J M, et al. Theory of ballooning modes in tokamaks with finite shear[J].Physical Review Letters,1977,39:943-946.
[4] Tang W M, Connor J W,Hastie R J. Kineticballooningmode theory in general geometry[J].Nuclear Fusion,1980,20:1439-1453.
[5] Simakov A, Catto P. Evaluation of the neoclassical radial electric field in a collisional tokamak[J].Physics of Plasmas,2005,12:012105 .
[6] Grandgirard V, Brunetti M, Bertrand P,et al. A drift-kinetic SemiLagrangian 4D code for ion turbulence simulation[J].Journal of Computational Physics,2006,217:395-423 .
[7] Liu Y, Chu M S, Gimblett C G, et al. Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks[J].Physics of Plasmas,2008,15:092505.
[8] Smolyakov A,Garbet X. Drift kinetic equation in the moving reference frame and reduced magnetohydrodynamic equations[J].Physics of Plasmas,2010,17:042105.
[9] Catto P,Tsang K. Linearized gyrokinetic equations with collisions[J].Physics of Fluids,1977,20:396-401.
[10] Peeters A, Strintzi D. The effect of a uniform radial electric field on the toroidal ion temperature gradient mode[J].Physics of Plasmas,2004(11):3748-3751.
[11] Lin Z, Hahm T S, Lee W W, et al. Turbulent transport reduction by zonal flows: Massively parallel simulations[J].Science,1998,281:1835-1837.
[12] Wang W X, Lin Z, Tang W M,et al. Gyrokinetic simulation of global turbulent transport properties in Tokamak experiments[J].Physics of Plasmas,2006(13):092505.
[13] Roberts K V,Taylor J B. Physical magnetohydrodynamic equations for finite larmor radius[J].Review Letters,1962(8):197-198.
[14] Braginskii S. Transport processes in a plasma[J].Reviews of Plasma Physics,1965(1):205-211.
[15] Ruden E. The polarity dependent effect of gyroviscosity on the flow shear stabilized RayleighTaylor instability and an application to the plasma focus[J].Physics of Plasmas,2004(1):713-723.
[16] Scheffel J, Faghihi M. Stability of shortaxialwavelength internal kink modes of an anisotropic plasma[J].Journal of Plasma Physics, 2009, 41: 427-439 .
[17] Qiu X M, Huang L, Jian G D. Finite Larmor radius magnetohydrodynamic analysis of the RayleighTaylor instability in Z pinches with sheared axial flow[J].Physics of Plasmas, 2007(14): 032111.
[18] Jian G D , Huang L, Qiu X M. Assembling Stabilization of the RayleighTaylor Instability by the effects of finite larmor radius and sheared axial flow[J].Plasma Science and Technology,2005(7):2805-2809 .
[19] Huba J D. Finite Larmor radius magnetohydrodynamics of the RayleighTaylor instability[J].Physics of Plasmas,1996(3):2523-2532.
[20] Dewar R,Glasser A. Ballooning mode spectrum in general toroidal systems[J].Physics of Fluids,1983,26:3038-3052.
[21] Grassie K, Krech M. A complete set of resistive compressive ballooning equations for twodimensional flow equilibria[J].Physics of Fluids B: Plasma Physics,1990(2):536-538.
[22] Cooper W A. Plasma Ballooning instabilities in tokamaks with sheared toroidal flows[J].Physics and Controlled Fusion,1988,30:1805-1812.

相似文献/References:

[1]蒋海斌,陈巧玲,姚少波.有限拉莫尔半径效应对电阻性气球模的影响[J].福建工程学院学报,2014,12(03):263.[doi:10.3969/j.issn.1672-4348.2014.03.013]
 Jiang Haibin,Chen Qiaolin,Yao Shaobo.Effect of finite Larmor radius on resistive ballooning modes[J].Journal of FuJian University of Technology,2014,12(01):263.[doi:10.3969/j.issn.1672-4348.2014.03.013]

更新日期/Last Update: 2015-02-25