[1]臧万军,张雨露,赵曦雯.富水地层地铁车站结构抗浮措施性能分析[J].福建工程学院学报,2022,20(04):346-353.[doi:10.3969/j.issn.1672-4348.2022.04.007]
 ZANG Wanjun,ZHANG Yulu,ZHAO Xiwen.Performance analysis of anti-floating measures for metro station structure in water-rich strata[J].Journal of FuJian University of Technology,2022,20(04):346-353.[doi:10.3969/j.issn.1672-4348.2022.04.007]
点击复制

富水地层地铁车站结构抗浮措施性能分析()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年04期
页码:
346-353
栏目:
出版日期:
2022-08-25

文章信息/Info

Title:
Performance analysis of anti-floating measures for metro station structure in water-rich strata
作者:
臧万军张雨露赵曦雯
福建工程学院土木工程学院
Author(s):
ZANG Wanjun ZHANG Yulu ZHAO Xiwen
School of Civil Engineering, Fujian University of Technology
关键词:
富水地层地铁车站抗浮措施数值模拟变形
Keywords:
water-rich strata metro stations anti-floating measures numerical simulation deformation
分类号:
U231
DOI:
10.3969/j.issn.1672-4348.2022.04.007
文献标志码:
A
摘要:
以某沿海城市地铁车站结构为例,通过室内单桩竖向抗压静载试验,计算单桩极限侧阻力,理论验算和MIDAS 有限元软件数值模拟相结合,对比分析不同抗浮措施下车站结构底板位移、变形大小。 结果表明:围护结构法抗浮,车站底板竖向位移得到控制,但结构底板变形较大,底板水头高度为17.4 m 时,底板最大变形5.75 mm;抗浮锚杆和抗浮桩可有效减小结构底板变形,底板水头高度为17.4m 时,两种抗浮措施下底板最大变形分别为2.37 和2.04 mm;抗浮组合措施能够发挥各自优势,抗浮效果明显,对结构变形控制较好;排水减压法基于减小结构水浮力原理抗浮,抗浮效果显著。
Abstract:
In order to compare and analyze the displacement and deformation of the station floor, a metro station in a coastal city was taken as an example for analysis, while the ultimate lateral resistance of single pile was calculated by indoor single-pile vertical compression static load test, and the method of combining theoretical calculation with MIDAS finite element software numerical simulation was adopted. Results demonstrate that when the retaining structure method is used to resist floating, the vertical displacement of the station floor is effectively controlled, but the structural floor is greatly deformed, and the maximum deformation of the floor is 5.75 mm when the hydraulic head of the floor is 17.4 m; the anti-floating anchor rod and the anti-floating pile can effectively reduce the deformation of structural floor, and when the hydraulic head of the floor is 17.4 m, the maximum deformation of the floor under the two anti-floating measures is 2.37 and 2.04 mm; the anti-floating combination can give full play to their respective advantages, producing the most obvious anti-floating effect and a better control of the structural deformation; the method of drainage and decompression is based on the principle of reducing the buoyancy of the structure, and the anti-floating effect is significant.

参考文献/References:

[1] 骆冠勇, 马铭骏, 曹洪, 等. 临江地下结构主被动联合抗浮方法及应用[J]. 岩土力学, 2020, 41(11): 3730-3739.[2] 白晓宇, 王海刚, 张明义, 等. 抗浮锚杆承载性能研究进展[J]. 科学技术与工程, 2020, 20(8): 2949-2958.[3] 李国胜. 地下室设计中水浮力问题的探讨[J]. 建筑结构, 2018, 48(18): 117-123.[4] 中华人民共和国住房和城乡建设部. 高层建筑岩土工程勘察标准: JGJ/T 72—2017[S]. 北京: 中国建筑工业出版社, 2017[5] 中华人民共和国住房和城乡建设部. 建筑工程抗浮技术标准: JGJ 476—2019[S]. 北京: 中国建筑工业出版社, 2019[6] 游庆, 陆有忠. 地下室抗浮设防水位标高取值的讨论以及抗浮措施[J]. 地质与勘探, 2019, 55(5): 1314-1321.[7] 王军辉, 陶连金, 韩煊, 等. 我国结构抗浮水位研究现状与展望[J]. 水利水运工程学报, 2017(3): 124-132.[8] 宋林辉, 王宇豪, 付磊, 等. 软黏土中地下结构浮力测试试验与分析[J]. 岩土力学, 2018, 39(2): 753-758.[9] 陆启贤, 任志盛, 杨济铭, 等. 黏土中孔压传递规律及水浮力折减的试验研究[J]. 工业建筑, 2019, 49(3): 126-131.[10] YANG J W, FENG Z H, LUO X R, et al. Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 64-71.[11] 中华人民共和国住房和城乡建设部. 建筑基桩检测技术规范: JGJ 106—2014[S]. 北京: 中国建筑工业出版社, 2014.[12] 井德胜, 白晓宇, 刘超, 等. 抗浮锚杆荷载-位移特性及极限承载力预测[J]. 科学技术与工程, 2021, 21(22): 9570-9576.[13] 叶俊能, 刘干斌. 考虑围护摩阻力的地铁车站结构抗浮安全设计[J]. 岩土力学, 2010, 31(S1): 279-283.[14] 李广涛. 广州地铁暹岗站的抗浮计算分析[J]. 隧道建设, 2013, 33(11): 937-941.[15] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

相似文献/References:

[1]卓少琳,黄文金,温银龙,等.地铁车站顶板上翻梁结构设计优化[J].福建工程学院学报,2022,20(01):68.[doi:10.3969/j.issn.1672-4348.2022.01.011]
 ZHUO Shaolin,HUANG Wenjin,WEN Yinlong,et al.Structural design optimization of inverted T-shaped beam in stop floor of metrostations[J].Journal of FuJian University of Technology,2022,20(04):68.[doi:10.3969/j.issn.1672-4348.2022.01.011]

更新日期/Last Update: 2022-08-25