[1]郭昊文,陈思妍,罗浩,等.“海上田园”背景下的渔排多微电网经济运行优化策略[J].福建理工大学学报,2024,22(04):379-386.[doi:10.3969/j.issn.2097-3853.2024.04.011]
 GUO Haowen,CHEN Siyan,LUO Hao,et al.Optimization strategy of economic operation of fishery microgrids under the background of “marine pastoral fields”[J].Journal of Fujian University of Technology;,2024,22(04):379-386.[doi:10.3969/j.issn.2097-3853.2024.04.011]
点击复制

“海上田园”背景下的渔排多微电网经济运行优化策略()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年04期
页码:
379-386
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
Optimization strategy of economic operation of fishery microgrids under the background of “marine pastoral fields”
作者:
郭昊文陈思妍罗浩黄靖
福建理工大学电子电气与物理学院
Author(s):
GUO Haowen CHEN Siyan LUO Hao HUANG Jing
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
多微电网多目标优化NSGA-ⅡCMOEAD优化策略
Keywords:
microgridsmulti-objective optimizationNSGA-ⅡCMOEADoptimization strategy䥺Symbol`@@
分类号:
TM73
DOI:
10.3969/j.issn.2097-3853.2024.04.011
文献标志码:
A
摘要:
针对“海上田园”渔排多微电网系统,提出了微电网群系统模型,并针对其在无大电网支持的特殊环境下维持电力所面临的供应稳定性和经济效益的挑战,提出了两个经济性目标函数,综合考虑了微电网间的功率调度及其经济效益。应用非支配排序遗传算法Ⅱ(NSGA?Ⅱ)和基于分解的约束多目标进化算法(CMOEA/D)对目标函数求解。结果表明,CMOEA/D算法在追求经济最优解方面表现出较高的效率和准确度,在最优解的质量和迭代时间上也都比NSGA?Ⅱ算法表现更优,验证了所提模型和算法的有效性。
Abstract:
For the aquaculture raft microgrid system in the “marine pastoral fields”, a model of microgrid cluster systems is proposed. Addressing the challenges of maintaining stable power supply and economic benefits in the special environment without the support of a large grid, two economic objective functions are introduced, which take into account the power dispatching between microgrids and their economic benefits. The non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) and the constraint multi-objective evolutionary algorithm based on decomposition (CMOEA/D) are applied to solve the objective functions. Results indicate that the CMOEA/D algorithm demonstrates higher efficiency and accuracy in pursuing economically optimal solutions, outperforming the NSGA-Ⅱ algorithm in both the quality of the optimal solutions and the iterative time, thereby verifying the effectiveness of the proposed model and algorithms.

参考文献/References:

[1] 郑廷裕,丘雨晨,雷美容. 宁德打造“风、光、储、充、用” 微电网示范项目清洁能源续能“海上田园”[J]. 中国电力企业管理,2023(25):43-45.[2] YANG M,SUN L,WANG J X. Multi-objective optimization scheduling considering the operation performance of islanded microgrid[J]. IEEE Access,2020,8:83405-83413. [3] 叶清泉,林厚飞,金建新,等. 考虑经济性和灵活性的海岛微电网优化调度策略[J]. 浙江电力,2022,41(3):54-64. [4] 马丽叶,刘美思,尹钰,等. 主动配电网中多微网鲁棒环境经济调度研究[J]. 太阳能学报,2020,41(11):1-10. [5] 何力,吕红芳. 考虑经济性的多微电网优化调度研究[J]. 发电技术,2018,39(5):397-404. [6] SANG B,LIU L S,ZHANG T,et al. Two-stage robust economic dispatch of multimicrogrids under expected scenario[C]∥2020 4th International Conference on HVDC (HVDC). Xi’an: IEEE, 2020:1263-1269.[7] 马月,吕永刚,温友超,等. 海上光伏电站基础结构的综述[J]. 科技与创新,2023(20):92-95. [8] 曾胜财,兰祥武. 海上渔排离网型光伏电站设计与应用[J]. 海峡科学,2023(10):39-42,69. [9] 熊礼俭.风力发电新技术与发电工程设计、运行、维护及标 准规范实用手册[M].北京:中国科技文化出版社,2005. [10] 陈恒安,管霖,卢操,等. 新能源发电为主电源的独立微网多目标优化调度模型和算法[J]. 电网技术,2020,44(2):664-674. [11] 毛晓明,陈深,吴杰康,等. 分时电价机制下含蓄电池微网的优化调度[J]. 电网技术,2015,39(5):1192-1197. [12] JAIN H,DEB K. An evolutionary manyobjective optimization algorithm using reference-point based nondominated sorting approach,part Ⅱ:handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation,2014,18(4):602-622. [13] 陶思钰,黄民翔. 基于NSGA-Ⅱ算法的并网型微网多目标调度[J]. 华东电力,2013,41(8):1678-1682. [14] ZHAO W T,WANG Z S,SONG W H,et al. Multi-objective optimal operation of microgrid based on NSGAⅢ algorithm[C]∥2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Shanghai: IEEE,2022:877-881.

相似文献/References:

[1]郑莲琼,邱明锋,李国宏.基于差分粒子群算法的铝合金模板多目标智能配模方法[J].福建理工大学学报,2024,22(04):307.[doi:10.3969/j.issn.2097-3853.2024.04.001]
 ZHENG Lianqiong,QIU Mingfeng,LI Guohong.Multi-objective intelligent matching method for aluminum alloy formwork based on differential particle swarm optimization algorithm[J].Journal of Fujian University of Technology;,2024,22(04):307.[doi:10.3969/j.issn.2097-3853.2024.04.001]

更新日期/Last Update: 2024-08-25