[1]董志文,苏晶晶.基于VMD-MTF-CNN的故障电弧检测方法[J].福建理工大学学报,2024,22(04):371-378.[doi:10.3969/j.issn.2097-3853.2024.04.010]
 DONG Zhiwen,SU Jingjing.Arc fault detection method based on VMD-MTF-CNN[J].Journal of Fujian University of Technology;,2024,22(04):371-378.[doi:10.3969/j.issn.2097-3853.2024.04.010]
点击复制

基于VMD-MTF-CNN的故障电弧检测方法()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年04期
页码:
371-378
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
Arc fault detection method based on VMD-MTF-CNN
作者:
董志文苏晶晶
福建理工大学电子电气与物理学院
Author(s):
DONG Zhiwen12 SU Jingjing
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
故障诊断马尔可夫转移场变分模态分解卷积神经网络
Keywords:
fault diagnosisMarkov transition fieldvariational mode decompositionconvolutional neural networks
分类号:
TP183;TM501.2
DOI:
10.3969/j.issn.2097-3853.2024.04.010
文献标志码:
A
摘要:
低压配电线路可能产生故障电弧引发电路故障,为了区分正常电流和有故障电弧的电流,提出一种基于电流二维图像与卷积神经网络的故障电弧检测方法。首先利用变分模态分解重构电流信号,解决非线性型负载正常和故障电流难以辨识的问题;再使用马尔可夫转移场算法对重构电流信号进行二维图像编码,生成特征图像数据集。为了提高故障电弧检测的准确率和效率,构建了基于卷积神经网络的故障诊断模型,将所提特征图像数据集与未经信号重构的特征图像数据集分别输到所构建的诊断模型进行对比验证,结果表明,所提方法能有效改善非线性负载状态混淆,故障检测的平均准确率达到99%。
Abstract:
Low-voltage distribution lines may produce arc faults, which may cause circuit faults. To distinguish between normal and fault currents, a fault arc detection method based on two-dimensional current images and convolutional neural networks is proposed. Firstly, the current signals are reconstructed using variational mode decomposition to address the challenge of distinguishing between normal and fault currents in nonlinear loads. Then, the Markov transition field algorithm is utilized to encode the reconstructed current signals into two-dimensional images, generating a dataset of feature images. To enhance the accuracy and efficiency of fault arc detection, a CNN-based fault diagnosis model is constructed. The proposed feature image dataset and the dataset of feature images without signal reconstruction are respectively fed into the constructed diagnostic model for comparison and validation. Results indicate that the proposed method effectively mitigates the confusion caused by nonlinear load states, achieving an average detection accuracy of 99%.

参考文献/References:

[1] YANG J H,FANG H Y,ZHANG R C,et al. An arc fault diagnosis algorithm using multiinformation fusion and support vector machines[J]. Royal Society Open Science,2018,5(9):180160.[2] 余琼芳,路文浩,杨艺. 基于深度长短时记忆网络的多支路串联故障电弧检测方法[J]. 计算机应用,2021,41(S1):321-326.[3] 张士文,张峰,王子骏,等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报,2014,29(6):290-295,302.[4] 余琼芳,胡亚倩,杨艺. 低压交流串联故障电弧检测概述[J]. 电器与能效管理技术,2020(1):24-30.[5] DANG H L,KIM J,KWAK S,et al. Series DC arc fault detection using machine learning algorithms[J]. IEEE Access,2021,9:133346-133364.[6] 刘树鑫,刘学识,李静,等. 基于SSA-ELM的直流串联故障电弧检测方法研究[J]. 电器与能效管理技术,2022(10):65-73.[7] 金翠,刘洋,李琦,等. 基于CatBoost的常用电器负载电弧故障识别方法[J]. 电测与仪表,2023,60(7):193-200.[8] 宿磊,沈煜,杨帆,等. 融合CEEMDAN分解与敏感IMF精选的串联电弧故障检测[J]. 电子测量与仪器学报,2022,36(10):173-180.[9] 杨帆,宿磊,杨志淳,等. 基于改进CEEMDAN分解与时空特征的低压供电线路串联故障电弧检测[J]. 电力系统保护与控制,2022,50(12):72-81.[10] TIAN J H,HAN D Y,LI M D,et al. A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis[J]. Knowledge-Based Systems,2022,243:108466. [11] 王同,许昕,潘宏侠. 基于多域信息融合与深度分离卷积的轴承故障诊断网络模型[J]. 机电工程,2024,41(1):22-32.[12] 余琼芳,黄高路,杨艺,等. 基于AlexNet深度学习网络的串联故障电弧检测方法[J]. 电子测量与仪器学报,2019,33(3):145-152.[13] 余琼芳,胡亚倩,杨艺. 基于小波特征及深度学习的故障电弧检测[J]. 电子测量与仪器学报,2020,34(3):100-108.[14] 李斌,杨亦航. 基于改进的AlexNet模型的家用负载电弧检测[J]. 传感技术学报,2023,36(12):1928-1934[15] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.[16] WANG Z,Oates T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]∥Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin: AIII,2015:1-7.[17] 黄新波,胡潇文,朱永灿,等. 基于卷积神经网络算法的高压断路器故障诊断[J]. 电力自动化设备,2018,38(5):136-140, 147.

相似文献/References:

[1]张树忠.风机齿轮箱故障诊断系统的设计与实现[J].福建理工大学学报,2018,16(06):516.[doi:10.3969/j.issn.1672-4348.2018.06.002]
 ZHANG Shuzhong.Design and realization of fault diagnosis system for the wind turbine’s gearbox[J].Journal of Fujian University of Technology;,2018,16(04):516.[doi:10.3969/j.issn.1672-4348.2018.06.002]
[2]傅锦涛,张弓,张树忠.基于迁移学习的磨倒机轴承故障诊断[J].福建理工大学学报,2024,22(04):393.[doi:10.3969/j.issn.2097-3853.2024.04.013]
 FU Jintao,ZHANG Gong,ZHANG Shuzhong.Bearing fault diagnosis of cross-working grinding mill based on transfer learning[J].Journal of Fujian University of Technology;,2024,22(04):393.[doi:10.3969/j.issn.2097-3853.2024.04.013]

更新日期/Last Update: 2024-08-25