参考文献/References:
[1] YANG J H,FANG H Y,ZHANG R C,et al. An arc fault diagnosis algorithm using multiinformation fusion and support vector machines[J]. Royal Society Open Science,2018,5(9):180160.[2] 余琼芳,路文浩,杨艺. 基于深度长短时记忆网络的多支路串联故障电弧检测方法[J]. 计算机应用,2021,41(S1):321-326.[3] 张士文,张峰,王子骏,等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报,2014,29(6):290-295,302.[4] 余琼芳,胡亚倩,杨艺. 低压交流串联故障电弧检测概述[J]. 电器与能效管理技术,2020(1):24-30.[5] DANG H L,KIM J,KWAK S,et al. Series DC arc fault detection using machine learning algorithms[J]. IEEE Access,2021,9:133346-133364.[6] 刘树鑫,刘学识,李静,等. 基于SSA-ELM的直流串联故障电弧检测方法研究[J]. 电器与能效管理技术,2022(10):65-73.[7] 金翠,刘洋,李琦,等. 基于CatBoost的常用电器负载电弧故障识别方法[J]. 电测与仪表,2023,60(7):193-200.[8] 宿磊,沈煜,杨帆,等. 融合CEEMDAN分解与敏感IMF精选的串联电弧故障检测[J]. 电子测量与仪器学报,2022,36(10):173-180.[9] 杨帆,宿磊,杨志淳,等. 基于改进CEEMDAN分解与时空特征的低压供电线路串联故障电弧检测[J]. 电力系统保护与控制,2022,50(12):72-81.[10] TIAN J H,HAN D Y,LI M D,et al. A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis[J]. Knowledge-Based Systems,2022,243:108466. [11] 王同,许昕,潘宏侠. 基于多域信息融合与深度分离卷积的轴承故障诊断网络模型[J]. 机电工程,2024,41(1):22-32.[12] 余琼芳,黄高路,杨艺,等. 基于AlexNet深度学习网络的串联故障电弧检测方法[J]. 电子测量与仪器学报,2019,33(3):145-152.[13] 余琼芳,胡亚倩,杨艺. 基于小波特征及深度学习的故障电弧检测[J]. 电子测量与仪器学报,2020,34(3):100-108.[14] 李斌,杨亦航. 基于改进的AlexNet模型的家用负载电弧检测[J]. 传感技术学报,2023,36(12):1928-1934[15] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.[16] WANG Z,Oates T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]∥Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin: AIII,2015:1-7.[17] 黄新波,胡潇文,朱永灿,等. 基于卷积神经网络算法的高压断路器故障诊断[J]. 电力自动化设备,2018,38(5):136-140, 147.
相似文献/References:
[1]张树忠.风机齿轮箱故障诊断系统的设计与实现[J].福建理工大学学报,2018,16(06):516.[doi:10.3969/j.issn.1672-4348.2018.06.002]
ZHANG Shuzhong.Design and realization of fault diagnosis system for the wind turbine’s gearbox[J].Journal of Fujian University of Technology;,2018,16(04):516.[doi:10.3969/j.issn.1672-4348.2018.06.002]
[2]傅锦涛,张弓,张树忠.基于迁移学习的磨倒机轴承故障诊断[J].福建理工大学学报,2024,22(04):393.[doi:10.3969/j.issn.2097-3853.2024.04.013]
FU Jintao,ZHANG Gong,ZHANG Shuzhong.Bearing fault diagnosis of cross-working grinding mill based on transfer learning[J].Journal of Fujian University of Technology;,2024,22(04):393.[doi:10.3969/j.issn.2097-3853.2024.04.013]