参考文献/References:
[1] DENG L,YAN W C,NIE L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures,2019,178:309-317.[2] CAWLEY P,ADAMS R D. The location of defects in structures from measurements of natural frequencies[J]. The Journal of Strain Analysis for Engineering Design,1979,14(2):49-57.[3] 丁幼亮,李爱群,缪长青. 基于小波包能量谱的结构损伤预警方法研究[J]. 工程力学,2006,23(8):42-48.[4] DING YL,LI A Q,LIU T. A study on the WPT-based structural damage alarming of the ASCE benchmark experiments[J]. Advances in Structural Engineering,2008,11(1):121-127.[5] 郏亚坤. 基于小波总能量相对变化的桥梁结构损伤识别研究[D]. 杭州:浙江大学,2017.[6] 王琦. 基于小波包分析与神经网络的拉索损伤识别方法[D]. 福州:福州大学,2018.[7] 万拥军. 基于小波包能量变化率的结构损伤识别方法研究[D]. 郑州:郑州大学,2009.[8] 常军. 在役桥梁结构损伤位置识别的综合指标方法研究[J]. 振动与冲击,2011,30(10):87-90,135.[9] LEE K,BYUN N,SHIN D H. A damage localization approach for rahmen bridge based on convolutional neural network[J]. KSCE Journal of Civil Engineering,2020,24(1):1-9.[10] XIN HH,CHENG L,DIENDER R,et al. Fracture acoustic emission signals identification of stay cables in bridge engineering application using deep transfer learning and wavelet analysis[J]. Advances in Bridge Engineering,2020,1(1):6. [11] LI S,SUN L Z. Detectability of bridge-structural damage based on fiber-optic sensing through deep-convolutional neural networks[J]. Journal of Bridge Engineering,2020,25(4): 04020012.[12] LI Y Q,ZHAO H W,YUE Z X,et al. Real-time intelligent prediction method of cable’s fundamental frequency for intelligent maintenance of cable-stayed bridges[J]. Sustainability,2023,15(5):4086.[13] 丁鹤鸣. 基于LSTM的桥梁拉索断丝信号识别[D]. 济南:山东大学,2022. [14] LI G M,DING H M,LI Y H,et al. Signal identification of wire breaking in bridge cables based on machine learning[J]. Mathematics,2022,10(19):3690. [15] 王亚娟. 多井联动排采设备钢丝绳力学性能分析[D]. 西安:西安石油大学,2015. [16] FEYRER K ,SCHFFNER G. Torque and torsional stiffness of wire rope - part II[J]. Wire,1987,37(1):23-27.
相似文献/References:
[1]叶建华,唐辉,罗奋翔,等.基于改进MobileNet的咖啡豆缺陷检测[J].福建理工大学学报,2023,21(03):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
YE Jianhua,TANG Hui,LUO Fenxiang,et al.Coffee bean defect detection based on improved MobileNet[J].Journal of Fujian University of Technology;,2023,21(04):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
[2]董志文,苏晶晶.基于VMD-MTF-CNN的故障电弧检测方法[J].福建理工大学学报,2024,22(04):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]
DONG Zhiwen,SU Jingjing.Arc fault detection method based on VMD-MTF-CNN[J].Journal of Fujian University of Technology;,2024,22(04):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]