[1]戴福全,池生烨.金刚石线表面缺陷视觉检测方法[J].福建理工大学学报,2024,22(03):267-274.[doi:10.3969/j.issn.2097-3853.2024.03.009]
 DAI Fuquan,CHI Shengye.Visual inspection method for surface defects of diamond wire[J].Journal of Fujian University of Technology;,2024,22(03):267-274.[doi:10.3969/j.issn.2097-3853.2024.03.009]
点击复制

金刚石线表面缺陷视觉检测方法()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年03期
页码:
267-274
栏目:
出版日期:
2024-06-25

文章信息/Info

Title:
Visual inspection method for surface defects of diamond wire
作者:
戴福全池生烨
福建理工大学机械与汽车工程学院
Author(s):
DAI Fuquan CHI Shengye
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
机器视觉金刚石线质量检测特征提取分类识别
Keywords:
machine visiondiamond wirequality inspectionfeature extractionclassification
分类号:
TP399
DOI:
10.3969/j.issn.2097-3853.2024.03.009
文献标志码:
A
摘要:
针对当前金刚石线表面质量检测算法存在因颗粒堆积、遮挡、粘连等问题导致准确率降低的情况,提出一种基于金刚石线的形貌特征和几何特征的质量检测方法。通过两台工业相机以背光照明的方式获取金刚石线图像,并应用图像处理技术进行裁剪、校正、增强、二值化等操作以准确提取金刚石线区域和特征信息,根据相关的特征信息完成对偏厚、偏薄、线头、剥离、杂质、分布、无缺陷等金刚石线图像的检测实验。实验结果表明,提出的方法能够准确、高效地提取金刚石线的各类缺陷,准确率达98.8%,能够满足企业实际检测需求。
Abstract:
In view of the fact that the accuracy of the current diamond wire surface quality detection algorithm is reduced due to the problems of particle accumulation, occlusion and adhesion, a quality detection method based on the morphological and geometric features of diamond wire was proposed. The diamond wire image is acquired by two industrial cameras in the form of backlight illumination, and the image processing technology is applied for cropping, correcting, enhancing, binarization and other operations to accurately capture the diamond wire area. Then, the diamond wire area is used for feature extraction, and the detection experiment of the diameter oversize, diameter undersize, wire end, stripping impurity, distribution, and no defects of the diamond wire images is completed according to the relevant feature information. The experimental results show that the proposed method can accurately and efficiently extract various defects of diamond wires, and the detection accuracy is 98.8%, which can meet the actual detection needs of enterprises.

参考文献/References:

[1] 高伟,张景涛,吴平,等. 电镀金刚石切割线的种类及制造工艺的研究概述[J]. 金刚石与磨料磨具工程,2012,32(3):35-40,45. [2] 高伟,窦百香,李艳红,等. 电镀金刚石线锯的制造工艺研究[J]. 工具技术,2009,43(7):56-59. [3] 郭联金,朱日龙,杨国卿,等. 浅谈机器视觉技术在自动化制造业中的应用[J]. 机电一体化,2015,21(8):63-67. [4] 张文晔. 基于机器视觉的金刚砂线颗粒检测技术的研究与应用[D]. 常州:江苏理工学院,2018. [5] 刘明宇,佃松宜. 基于机器视觉的金刚线表面质量检测[J]. 四川大学学报(自然科学版),2020,57(5):920-926. [6] 刘晓敏. 金刚石切割线质量视觉检测系统与应用研究 [D] .上海:上海工程技术大学,2021. [7] 黄叶祺,王明伟,闫瑞,等. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版),2023,41(4):123-134. [8] 赵玉康,毕文波,葛培琪. 电镀金刚石线锯表面磨粒分布密度的多相机视觉检测[J]. 金刚石与磨料磨具工程,2021,41(2):64-68. [9] AMEUR M,HABBA M,JABRANE Y. A comparative study of nature inspired optimization algorithms on multilevel thresholding image segmentation[J]. Multimedia Tools and Applications,2019,78(24):34353-34372.[10] 阳天舒,李梅,信荟敏,等. 基于形态学的自适应阈值分割算法[J]. 电子设计工程,2015,23(13):102-104. [11] 王序哲. 局部自适应二值化方法研究[J]. 软件导刊,2011,10(11):13-14. [12] 刘超,蔡文华,陆玲. 图像阈值法分割综述[J]. 电脑知识与技术,2015,11(1):140-142,145. [13] 王磊,段会川. Otsu方法在多阈值图像分割中的应用[J]. 计算机工程与设计,2008,29(11):2844-2845,2972. [14] 杨博文,张丽艳,叶南,等. 面向大视场视觉测量的摄像机标定技术[J]. 光学学报,2012,32(9):166-174. [15] 郑冬,冯鹏,龙邹荣,等. 面向多因素工况下的相机标定精度综述[J]. 国外电子测量技术,2020,39(8):109-116.

相似文献/References:

[1]檀甫贵、邹复民、刘丽桑、李建兴.基于机器视觉的软包锂电池表面缺陷检测[J].福建理工大学学报,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
 TAN Fugui,ZOU Fumin,LIU Lisang,et al.Surface defect detection of soft-pack lithium battery based on machine vision[J].Journal of Fujian University of Technology;,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
[2]戴福全、刘路杰.基于视觉引导的机器人抓取分类系统设计[J].福建理工大学学报,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
 DAI Fuquan,LIU Lujie.Design of vision-guided robotic grasping classification system[J].Journal of Fujian University of Technology;,2020,18(03):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
[3]李建兴、林华良、俞斌、陈炜、林晨煌、黄诗婷.基于机器视觉的汽车角窗玻璃混线检测算法[J].福建理工大学学报,2021,19(03):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
 LI Jianxing,LIN Hualiang,YU Bin,et al.Machine vision-based non-congeneric product detection algorithm for vehicle quarter glass[J].Journal of Fujian University of Technology;,2021,19(03):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
[4]李济泽,位威,张凯凯.基于机器视觉的养殖鱼摄食行为识别方法[J].福建理工大学学报,2022,20(04):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
 LI Jize,WEI Wei,ZHANG Kaikai.Recognition method of fish feeding behavior based on machine vision[J].Journal of Fujian University of Technology;,2022,20(03):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
[5]仓大健,吴选忠,李占福.基于R-Y通道冗余去除钢筋层阴影方法[J].福建理工大学学报,2022,20(04):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
 CANG Dajian,WU Xuanzhong,LI Zhanfu.Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal[J].Journal of Fujian University of Technology;,2022,20(03):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
[6]刘佳鑫,孔令华,郑积仕,等.基于机器视觉的木材径级测量系统设计[J].福建理工大学学报,2022,20(06):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
 LIU Jiaxin,KONG Linghua,ZHENG Jishi,et al.Design of wood diameter classification system based on machine vision[J].Journal of Fujian University of Technology;,2022,20(03):607.[doi:10.3969/j.issn.1672-4348.2022.06.016]
[7]董世超,陈丙三,连长伟,等.基于机器视觉的烟梗长度测量方法[J].福建理工大学学报,2024,22(01):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
 DONG Shichao,CHEN Bingsan,LIAN Changwei,et al.Measurement method of tobacco stem length based on machine vision[J].Journal of Fujian University of Technology;,2024,22(03):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]

更新日期/Last Update: 2024-06-25