参考文献/References:
[1] ZHANG J D,LIU T,YIN X L,et al. An improved parking space recognition algorithm based on panoramic vision[J]. Multimedia Tools and Applications,2021,80(12):18181-18209.[2] 田海勇,王靖岳,王若羽,等. 基于边缘编组的车位线检测方法[J]. 科学技术与工程,2022,22(31):13988-13994.[3] 江浩斌,王成雨,马世典,等. 基于图像梯度匹配的自动泊车系统车位识别方法[J]. 江苏大学学报(自然科学版),2020,41(6):621-626.[4] 张悦旺. 基于改进Hough变换的车位线识别方法[J]. 计算机工程与设计,2017,38(11):3046-3050.[5] 姜武华,辛鑫,陈无畏,等. 基于信息融合的自动泊车系统车位线车位识别和决策规划[J]. 中国机械工程,2020,31(10):1190-1196.[6] LI Y Y,MAO H Y,YANG W,et al. Research on parking space status recognition method based on computer vision[J]. Sustainability,2022,15(1):107.[7] HUANG C,YANG S Y,LUO Y G,et al. Visual detection and image processing of parking space based on deep learning[J]. Sensors,2022,22(17):6672.[8] MA S D,FANG W F,JIANG H B,et al. Parking space recognition method based on parking space feature construction in the scene of autonomous valet parking[J]. Applied Sciences,2021,11(6):2759.[9] 张成涛,覃立仁,杨航,等. 自动泊车关键技术研究进展综述[J]. 汽车工程学报,2023,13(5):603-614.[10] ZHANG X,ZHAO W,JIANG Y Q. Study on parking space recognition based on improved image equalization and YOLOv5[J]. Electronics,2023,12(15):3374.[11] 苗作华,朱良建,赵成诚,等. 基于Retinex的低光照车位图像增强[J]. 汽车工程,2023,45(6):989-996.[12] 李尧,王彦. 基于全局阈值分割及多项式拟合的车道线识别[J]. 南华大学学报(自然科学版),2021,35(1):77-82,96.[13] 黄晨,刘泽,罗禹贡,等. 基于背景光照去除和连通区域的车位检测[J]. 汽车工程,2020,42(1):47-51,73.[14] 董翼宁,曹景胜,孙飞宇,等. 基于OpenCV图像处理的车道线识别研究[J]. 仪器仪表与分析监测,2023(3):29-32.
相似文献/References:
[1]梅文豪,李济泽,戴福全.基于机器视觉的电机端盖孔直径的在线测量[J].福建理工大学学报,2018,16(04):341.[doi:10.3969/j.issn.1672-4348.2018.04.007]
MEI Wenhao,LI Jize,DAI Fuquan.Online measurement of the motor cover hole diameter based on machine vision[J].Journal of Fujian University of Technology;,2018,16(01):341.[doi:10.3969/j.issn.1672-4348.2018.04.007]