参考文献/References:
[1] GUNADI I A,ARTHA I K,CHRISTYADITAMA I P,et al. Detection of coffee bean damage in the roasting process based on shape features analysis[J]. Journal of Physics:Conference Series,2020,1503(1):012001.[2] ARBOLEDA E R,FAJARDO A C,MEDINA R P. An image processing technique for coffee black beans identification[C]∥2018 IEEE International Conference on Innovative Research and Development (ICIRD). Bangkok,Thailand: IEEE,2018: 1-5. [3] GARCA,CANDELO-BECERRA,HOYOS. Quality and defect inspection of green coffee beans using a computer vision system[J]. Applied Sciences,2019,9(19):4195.[4] OLIVERI P,MALEGORI C,CASALE M,et al. An innovative multivariate strategy for HSI-NIR images to automatically detect defects in green coffee[J]. Talanta,2019,199:270-276.[5] CHEN S Y,CHANG C Y,OU C S,et al. Detection of insect damage in green coffee beans using VIS-NIR hyperspectral imaging[J]. Remote Sensing,2020,12(15):2348.[6] DE OLIVEIRA E M,LEME D S,BARBOSA B H G,et al. A computer vision system for coffee beans classification based on computational intelligence techniques[J]. Journal of Food Engineering,2016,171:22-27.[7] 刘阳,高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报,2021,37(2):187-195.[8] 马本学,李聪,李玉洁,等. 基于残差网络和图像处理的干制哈密大枣外部品质检测[J]. 农业机械学报,2021,52(11):358-366.[9] HOWARD A G,ZHU M L,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL]. 2017:arXiv:1704.04861. https:∥arxiv.org/abs/1704.04861.[10] DENG J,DONG W,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami,FL,USA: IEEE,2009:248-255.[11] NAIR V,HINTON G E. Rectified linear units improve restricted boltzmann machines[C]∥Proceedings of the 27th International Conference on International Conference on Machine Learning. New York:ACM,2010:807-814.[12] MISRA D. Mish:a self regularized non-monotonic activation function[EB/OL]. 2019:arXiv:1908.08681. https:∥arxiv.org/abs/1908.08681.
相似文献/References:
[1]朱三凡,刘世凤,余印根,等.联合CNN与LSTM神经网络的斜拉索损伤识别方法[J].福建工程学院学报,2024,22(04):326.[doi:10.3969/j.issn.2097-3853.2024.04.004]
ZHU Sanfan,LIU Shifeng,YU Yingen,et al.A method for identifying cable damage in cable-stayed bridges by combining CNN and LSTM neural network[J].Journal of FuJian University of Technology,2024,22(03):326.[doi:10.3969/j.issn.2097-3853.2024.04.004]
[2]董志文,苏晶晶.基于VMD-MTF-CNN的故障电弧检测方法[J].福建工程学院学报,2024,22(04):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]
DONG Zhiwen,SU Jingjing.Arc fault detection method based on VMD-MTF-CNN[J].Journal of FuJian University of Technology,2024,22(03):371.[doi:10.3969/j.issn.2097-3853.2024.04.010]