[1]刘佳鑫,孔令华,郑积仕,等.基于机器视觉的木材径级测量系统设计[J].福建工程学院学报,2022,20(06):607-612.[doi:10.3969/j.issn.1672-4348.2022.06.016]
 LIU Jiaxin,KONG Linghua,ZHENG Jishi,et al.Design of wood diameter classification system based on machine vision[J].Journal of FuJian University of Technology,2022,20(06):607-612.[doi:10.3969/j.issn.1672-4348.2022.06.016]
点击复制

基于机器视觉的木材径级测量系统设计()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年06期
页码:
607-612
栏目:
出版日期:
2022-12-25

文章信息/Info

Title:
Design of wood diameter classification system based on machine vision
作者:
刘佳鑫孔令华郑积仕丁志刚冯丽
福建工程学院管理学院
Author(s):
LIU Jiaxin KONG Linghua ZHENG Jishi DING Zhigang FENG Li
School of Management, Fujian University of Technology
关键词:
机器视觉图像分割径级测量最小二乘法
Keywords:
machine vision image segmentation diameter measurement least squares method
分类号:
S781;TB391.41
DOI:
10.3969/j.issn.1672-4348.2022.06.016
文献标志码:
A
摘要:
针对人工测量木材径级效率低、存在主观误差等问题,基于机器视觉技术开发了一个木材径级自动测量系统。利用Opencv设计算法流程,采用背景减法、均值滤波、固定阈值分割得到木材径向截面轮廓的二值图像,再利用边缘检测和椭圆拟合算法拟合轮廓的椭圆,将椭圆短轴像素点数转换为木材直径。利用C#编写人机交互界面显示木材直径的测量结果并将分类结果传输给下位机。经过实验验证,该系统的软件算法流程能够准确测量木材直径,得到的测量绝对误差在0.8 cm以内,单根测量平均时间为0.895 s,有效提高了木材径级测量的效率,为实现木材径级的自动化分拣提供支撑。
Abstract:
Aiming at the low efficiency and subjective error of manual measurement of wood diameter grade, an automatic measurement system of wood diameter grade was developed based on machine vision technology, and the algorithm flow was designed by using Opencv, and the binary image of the contour of the radial section of wood was obtained by background subtraction, mean value filtering and fixed threshold segmentation. Edge detection and ellipse fitting algorithm were used to fit the ellipse of the contour. The ellipse minor axis pixel points were converted into wood diameter. C# was used to program the human-computer interaction interface to display the measurement results of wood diameter and transmit the classification results to the lower computer. After experimental verification, the software algorithm flow of the system can accurately measure the diameter of wood, and the absolute error of the measurement obtained is within 0.8 cm, and the average measurement time of a single piece is 0.895 s, which effectively improves the efficiency of wood diameter grade measurement and provides support for the automated sorting of wood diameters.

参考文献/References:

[1] 韩伟聪, 鲍光海. 基于机器视觉的竹材尺寸测量系统设计[J]. 中国测试, 2016, 42(7): 74-78.[2] 张萍萍, 李童, 李茹, 等. 一种改进的Sobel图像边缘检测算法及其实现[J]. 电视技术, 2022, 46(5): 42-45.[3] 李迪, 吴奇, 杨浩森. 基于改进Sobel算子的边缘检测系统的设计与实现[J]. 信息技术与网络安全, 2022, 41(3): 13-17.[4] 位营杰, 师红宇. 基于Canny算子的优化研究[J]. 国外电子测量技术, 2021, 40(8): 77-81.[5] 杜绪伟, 陈东, 马兆昆, 等. 基于Canny算子的改进图像边缘检测算法[J]. 计算机与数字工程, 2022, 50(2): 410-413, 457.[6] 徐武, 张强, 王欣达, 等. 基于改进Canny算子的图像边缘检测方法[J]. 激光杂志, 2022, 43(4): 103-108.[7] 朱森荣, 刘杰徽. 基于最小二乘法椭圆拟合的改进型快速算法[J]. 舰船电子工程, 2022, 42(1): 33-35.[8] 夏海波. 基于Visual C++的图像增强和轮廓提取研究[J]. 工矿自动化, 2011, 37(3): 44-47.[9] 鲍华良, 赵娅. 经典Canny边缘检测的量子实现[J]. 吉林大学学报(信息科学版), 2022, 40(1): 36-50.[10] GANDER W, GOLUB G H, STREBEL R. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558-578.

相似文献/References:

[1]黄靖、李俊男、刘丽桑、罗堪、夏正邦、王泽洲.基于形态学重建与OTSU的极耳焊缝图像分割方法[J].福建工程学院学报,2019,17(04):359.[doi:10.3969/j.issn.1672-4348.2019.04.009]
 HUANG Jing,LI Junnan,LIU Lisang,et al.Polar ear weld image segmentation method based onmorphological reconstruction and OTSU[J].Journal of FuJian University of Technology,2019,17(06):359.[doi:10.3969/j.issn.1672-4348.2019.04.009]
[2]檀甫贵、邹复民、刘丽桑、李建兴.基于机器视觉的软包锂电池表面缺陷检测[J].福建工程学院学报,2020,18(03):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
 TAN Fugui,ZOU Fumin,LIU Lisang,et al.Surface defect detection of soft-pack lithium battery based on machine vision[J].Journal of FuJian University of Technology,2020,18(06):267.[doi:10.3969/j.issn.1672-4348.2020.03.012]
[3]戴福全、刘路杰.基于视觉引导的机器人抓取分类系统设计[J].福建工程学院学报,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
 DAI Fuquan,LIU Lujie.Design of vision-guided robotic grasping classification system[J].Journal of FuJian University of Technology,2020,18(06):530.[doi:10.3969/j.issn.1672-4348.2020.06.004]
[4]林亚君、陈学军.基于Ostu优化的PCNN电力故障区域提取[J].福建工程学院学报,2020,18(06):593.[doi:10.3969/j.issn.1672-4348.2020.06.015]
 LIN Yajun,CHEN Xuejun.Fault zone extraction of electrical equipment by using PCNN based on Otsu optimization[J].Journal of FuJian University of Technology,2020,18(06):593.[doi:10.3969/j.issn.1672-4348.2020.06.015]
[5]李建兴、林华良、俞斌、陈炜、林晨煌、黄诗婷.基于机器视觉的汽车角窗玻璃混线检测算法[J].福建工程学院学报,2021,19(03):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
 LI Jianxing,LIN Hualiang,YU Bin,et al.Machine vision-based non-congeneric product detection algorithm for vehicle quarter glass[J].Journal of FuJian University of Technology,2021,19(06):223.[doi:10.3969/j.issn.1672-4348.2021.03.004]
[6]张平均,翁悦,王小红,等.基于改进UNet的人造板表面缺陷的图像分割方法[J].福建工程学院学报,2022,20(04):373.[doi:10.3969/j.issn.1672-4348.2022.04.011]
 ZHANG Pingjun,WENG Yue,WANG Xiaohong,et al.Image segmentation method of surface defects of wood-based panels based on improved UNet[J].Journal of FuJian University of Technology,2022,20(06):373.[doi:10.3969/j.issn.1672-4348.2022.04.011]
[7]李济泽,位威,张凯凯.基于机器视觉的养殖鱼摄食行为识别方法[J].福建工程学院学报,2022,20(04):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
 LI Jize,WEI Wei,ZHANG Kaikai.Recognition method of fish feeding behavior based on machine vision[J].Journal of FuJian University of Technology,2022,20(06):378.[doi:10.3969/j.issn.1672-4348.2022.04.012]
[8]仓大健,吴选忠,李占福.基于R-Y通道冗余去除钢筋层阴影方法[J].福建工程学院学报,2022,20(04):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
 CANG Dajian,WU Xuanzhong,LI Zhanfu.Spatial ghosting elimination method of reinforcement layer based on R-Y channel redundancy removal[J].Journal of FuJian University of Technology,2022,20(06):391.[doi:10.3969/j.issn.1672-4348.2022.04.014]
[9]戚云涛,曾寿金,方宇轩,等.基于粒子群优化的双凸透镜缺陷Ostu阈值分割算法[J].福建工程学院学报,2023,21(06):598.[doi:10.3969/j.issn.1672-4348.2023.06.014]
 QI Yuntao,ZENG Shoujin,FANG Yuxuan,et al.Otsu threshold segmentation algorithm for defects ofdouble convex lens based on particle swarm optimization[J].Journal of FuJian University of Technology,2023,21(06):598.[doi:10.3969/j.issn.1672-4348.2023.06.014]
[10]董世超,陈丙三,连长伟,等.基于机器视觉的烟梗长度测量方法[J].福建工程学院学报,2024,22(01):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]
 DONG Shichao,CHEN Bingsan,LIAN Changwei,et al.Measurement method of tobacco stem length based on machine vision[J].Journal of FuJian University of Technology,2024,22(06):74.[doi:10.3969/j.issn.2097-3853.2024.01.011]

更新日期/Last Update: 2022-12-25