[1]姚耀伍,许明三,曾寿金,等.SLM成型AlSi10Mg倾斜薄壁件壁厚响应面法优化[J].福建工程学院学报,2022,20(01):19-26.[doi:10.3969/j.issn.1672-4348.2022.01.004]
 YAO Yaowu,XU Mingsan,ZENG Shoujin,et al.Wall thickness optimization of laser-melted AlSi10Mg inclined thin-wall parts by response surface method[J].Journal of FuJian University of Technology,2022,20(01):19-26.[doi:10.3969/j.issn.1672-4348.2022.01.004]
点击复制

SLM成型AlSi10Mg倾斜薄壁件壁厚响应面法优化()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年01期
页码:
19-26
栏目:
出版日期:
2022-02-25

文章信息/Info

Title:
Wall thickness optimization of laser-melted AlSi10Mg inclined thin-wall parts by response surface method
作者:
姚耀伍许明三曾寿金叶建华韦铁平
福建工程学院机械与汽车工程学院
Author(s):
YAO Yaowu XU Mingsan ZENG Shoujin YE Jianhua WEI Tieping
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
激光选区熔化响应面倾斜薄壁件壁厚相对误差
Keywords:
selective laser melting response surface inclined thin-walled parts wall thickness relative error
分类号:
TN249;TG174.4
DOI:
10.3969/j.issn.1672-4348.2022.01.004
文献标志码:
A
摘要:
针对激光选区熔化成形倾斜薄壁件尺寸精度低、成形质量差等问题,应用响应曲面法研究工艺参数及倾斜角度对薄壁件壁厚的影响,建立倾斜角度、工艺参数与壁厚相对误差关系模型。结果表明:倾斜角度对壁厚的影响最大,激光功率次之。由于倾斜角度改变,薄壁件悬垂面粉末支撑区域不同,导热效果存在差异,激光功率与扫描间距对于不同倾斜角度的薄壁件壁厚影响不同。其中,激光功率对45°倾斜薄壁件壁厚的影响最大,当激光功率选择150~350W时,壁厚相对误差最大差值为24%而扫描间距对90°倾斜薄壁件壁厚的影响最大,当扫描间距选择0.1~0.2mm时,壁厚相对误差最大差值为9.5%,合理的工艺参数能够有效降低壁厚相对误差。
Abstract:
In order to solve the problems of low dimensional accuracy and poor forming quality in laser selective melting forming of inclined thin-walled parts, the influence of process parameters and inclination angle on the wall thickness was studied by response surface method, and the relative error model of inclination angle, process parameters and wall thickness was established. Results show that the inclination angle has the greatest effect on the wall thickness, followed by laser power. Due to the change of inclination angle, the thermal conductivity of thin-walled parts is different due to the different support areas of overhanging end. Laser power and scanning spacing have different effects on the thickness of thin-walled parts with different inclination angles. Laser power has the greatest influence on the wall thickness of parts with a 45° inclination angle. When the laser power is 150 W to 350 W, the maximum relative error of the wall thickness is 24%. The scanning spacing has the greatest influence on the wall thickness of parts with a 90° inclination angle. When the scanning spacing is between 0.1 mm and 0.2 mm, the maximum difference of the wall thickness relative error is 9.5%. Reasonable processing parameters can effectively reduce the wall thickness relative error.

参考文献/References:

[1] BOEGELEIN T, LOUVIS E, DAWSON K, et al. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel[J]. Materials Characterization. 2016,112: 30-40.[2] XU Y, MA Y, ZHANG S, et al. Numerical and experimental study on large deformation of thin-walled tube through hydroforging process[J]. The International Journal of Advanced Manufacturing Technology. 2016, 87(5/6/78): 1885-1890.[3] MIRANDA G, FARIA S, BARTOLOMEU F, et al. A study on the production of thin-walled Ti6Al4V parts by selective laser melting[J]. Journal of Manufacturing Processes, 2019, 39: 346-355.[4] 刘正武, 时云, 王毅, 等. 激光选区熔化制备超薄铝合金板的可行性及力学性能[J]. 机械工程材料, 2020, 44(11): 97-101.[5] READ N, WANG W, ESSA K, et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development[J]. Materials & Design (1980-2015), 2015, 65: 417-424.[6] 邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6): 656-662.[7] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.[8] GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.[9] ZHANG J L, SONG B, WEI Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.[10] 孙兵兵, 房立家, 张学军. 激光选区熔化AlSi10Mg工艺优化及显微组织研究[J]. 焊接技术, 2020, 49(2): 5-8, 113.[11] BROWN B, EVERHART W, DINARDO J. Characterization of bulk to thin wall mechanical response transition in powder bed AM[J]. Rapid Prototyping Journal, 2016, 22(5): 801-809.[12] 赵鑫, 虞雨洭, 吴圣川, 等. 新型飞机用铝合金薄壁件的选区激光熔化成形研究[J]. 电焊机, 2021, 51(3): 1-7, 111.[13] LIU Y, ZHANG J, PANG Z C, et al. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method[J]. Optics and Lasers in Engineering, 2018, 103: 34-45. [14] 史振伟, 王敏杰, 戚文军, 等. 激光选区熔化3D打印AlSi10Mg合金的铺粉厚度研究[J]. 中国机械工程, 2021: 1-9.[15] 邢闽芳, 房强汉, 兰利洁. 互换性与技术测量[M].北京: 清华大学出版社, 2011: 76.

相似文献/References:

[1]朱逸韬、黄卫东(通)、张伟杰、陈侠宇、赖章鹏.基于SLM的18Ni-300模具钢工艺参数优化[J].福建工程学院学报,2020,18(06):570.[doi:10.3969/j.issn.1672-4348.2020.06.011]
 ZHU Yitao,HUANG Weidong,ZHANG Weijie,et al.Process parameter optimization of 18Ni-300 tool steel based on selective laser melting[J].Journal of FuJian University of Technology,2020,18(01):570.[doi:10.3969/j.issn.1672-4348.2020.06.011]

更新日期/Last Update: 2022-02-25