[1]冯美艳,郑斌黎,褚梦雅,等.新型发生炉防煤气泄漏装置优化[J].福建工程学院学报,2022,20(01):7-12.[doi:10.3969/j.issn.1672-4348.2022.01.002]
 FENG Meiyan,ZHENG Binli,CHU Mengya,et al.Optimization of new gas leakage prevention device for generators[J].Journal of FuJian University of Technology,2022,20(01):7-12.[doi:10.3969/j.issn.1672-4348.2022.01.002]
点击复制

新型发生炉防煤气泄漏装置优化()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第20卷
期数:
2022年01期
页码:
7-12
栏目:
出版日期:
2022-02-25

文章信息/Info

Title:
Optimization of new gas leakage prevention device for generators
作者:
冯美艳郑斌黎褚梦雅陈昌荣黄旭
福建工程学院机械与汽车工程学院
Author(s):
FENG Meiyan ZHENG Binli CHU Mengya CHEN Changrong HUANG Xu
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
发生炉煤气泄漏N2 吹扫装置气体置换数值模拟
Keywords:
generators gas leakage N2 blowing device gas replacement numerical simulation
分类号:
TQ545
DOI:
10.3969/j.issn.1672-4348.2022.01.002
文献标志码:
A
摘要:
发生炉生产煤气过程中,炉内煤气经开启的加煤阀向上泄露至缓冲煤仓和储煤仓,容易引起爆炸、人员中毒等事故,造成能源浪费和环境污染。为了降低缓冲煤仓煤气含量,并有效地封堵煤气进入储煤仓,提高置换效率及能源利用率,降低闪爆事故发生率,针对某煤气发生炉建立缓冲煤仓三维模型。采用FLUENT对缓冲煤仓吹扫N2置换煤气的过程进行模拟,探究一级进气管长和二级进气角度对缓冲煤仓内煤气置换时间的影响规律。试验结果表明,缓冲煤仓内N2浓度由初始60%急剧增加,8s后达到99%,之后N2浓度增长缓慢。CO浓度由初始30%逐渐降低,8s后接近于0,完成置换。0°进气孔优于90°进气孔进气管长占缓冲煤仓总高度的比例约为1/3时为最优,置换时间更短。该结构通过两级协同吹扫,有效解决加煤时缓冲煤仓的煤气外泄问题和储煤仓闪爆问题。
Abstract:
In the process of furnace gas production, the gas in the furnace leaks upward through the open coal valve to the buffer coal bunker and coal storage bunker, which causes explosion, personnel poisoning, energy waste and environmental pollution. This research aims at reducing the gas content in the buffer bunker and effectively preventing gas from entering the coal storage bunker. Consequently, the replacement efficiency and energy utilization rate can be improved to reduce the incidence of flash explosions. A three-dimensional model of buffer bunker was established for a gas generator and the FLUENT was used to simulate the process of blowing N2 to replace gas in buffer bunker. The influence of the length of primary intake pipe and the angle of secondary inlet on the time of gas replacement in buffer bunker was investigated. Experiment results show that the N2concentration in buffer bunker increases sharply from the initial 60% and reaches 99% after 8 seconds followed by a slow increase; while the CO concentration decreases gradually from the initial 30% and approximates 0 after 8 seconds, indicating that the replacement is completed. The 0-degree air inlet is better than the 90-degree one; the optimal proportion of the length of the intake pipe to the total height of the buffer coal bunker is about 1/3, and the replacement time is shorter. Through two-stage collaborative blowing, the structure effectively solves the problem of gas leakage from the buffer coal bunker and the flash explosion problem of the coal storage bunker when adding coal.

参考文献/References:

[1] DAI J X, NI Y Y, LIAO F R, et al. The significance of coal-derived gas in major gas producing countries[J]. Petroleum Exploration and Development, 2019, 46(3): 435-450.[2] 薛知宜, 李洪枚, 王新春, 等. 建筑陶瓷行业发生炉煤气站污染防治措施研究[J]. 佛山陶瓷, 2020, 30(9): 46-52,36.[3] 杨凯, 丁志江, 肖立春, 等. 发生炉煤气在电除尘器中爆炸与泄爆过程的数值模拟[J]. 燕山大学学报, 2015, 39(2): 182-188.[4] 刘臻, 次东辉, 方薪晖, 等. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J/OL]. 洁净煤技术: 1-9[2022-03-03]. http://kns.cnki.net/kcms/detail/11.3676.TD.20210830.1627.002.html.[5] 王有红. 基于ANSYS的煤气发生炉爆炸事故分析及对策研究[D]. 北京: 中国地质大学(北京), 2015.[6] 石锐, 王峰, 李侠. 天然气气化炉烧嘴泄漏原因及解决方法[J]. 化工设计通讯, 2018, 44(12): 111.[7] 杨振峰. 煤气发生炉炉体夹套外筒体腐蚀减薄分析[J]. 广东化工, 2019, 46(15): 154-155.[8] 蒋少华. 基于LS-SVM的煤气发生炉关键参数预测[J]. 中南大学学报(自然科学版), 2014, 45(6): 1873-1878.[9] 冯美艳, 李飞. 反应器结构对多段气化炉内颗粒分布的影响[J].过程工程学报, 2019, 19(2): 297-308.[10] 付婷婷. 封闭煤气化厂房内气体泄漏扩散及爆炸事故危害模拟[D]. 淮南: 安徽理工大学, 2018.[11] 郑斌黎. 一种防止加煤料时煤气泄漏的煤气发生炉: CN210711422U[P]. 2020-06-09.

更新日期/Last Update: 2022-02-25