参考文献/References:
[1] 吴艳琳, 王勇, 乔丽英, 等. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究[J]. 功能材料, 2018, 49(6):6080-6087, 6092.[2] 高芮宁, 熊胤泽, 张航, 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性[J]. 稀有金属材料与工程, 2021, 50(1):249-254.[3] 李祥, 高芮宁, 熊胤泽, 等. 基于TPMS结构的多孔钛制备与表征[J]. 稀有金属材料与工程, 2020, 49(1):325-330.[4] KESHAVARZAN M, KADKHODAEI M, BADROSSAMAY M, et al. Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings[J]. Mechanics of Materials, 2020, 140:103150.[5] MASKERY I, AREMU A O, PARRY L, et al. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading[J]. Materials & Design, 2018, 155:220-232.[6] HAN C J, LI Y, WANG Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:119-127.[7] YANG L, HAN C J, WU H Z, et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109:103843.[8] 高芮宁, 李祥. 径向梯度多孔支架设计与力学性能分析[J]. 机械工程学报, 2021, 57(3):220-226.[9] YAN C Z, HAO L, HUSSEIN A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51:61-73.[10] VAN BAEL S, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4 V porous structures[J]. Materials Science and Engineering:A, 2011, 528(24):7423-7431.[11] LIU F, MAO Z F, ZHANG P, et al. Functionally graded porous scaffolds in multiple patterns:New design method, physical and mechanical properties[J]. Materials & Design, 2018, 160:849-860.[12] 陈轲, 云忠, 周俊. TC4钛合金仿生骨植入体单元结构力学性能分析[J]. 机械科学与技术, 2020, 39(8):1277-1282.[13] AL-SAEDI D S J, MASOOD S H, FAIZAN-UR-RAB M, et al. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM[J]. Materials & Design, 2018, 144:32-44.[14] 吴先哲, 刘红旗, 王富友, 等. 激光选区熔化成形多孔钽金属构件力学性能研究[J]. 激光杂志, 2019, 40(11):154-160.[15] MA Z B, ZHANG D Z, LIU F, et al. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting:Microstructures, mechanical properties and energy absorption[J]. Materials & Design, 2020, 187:108406.[16] MASKERY I, ABOULKHAIR N T, AREMU A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science and Engineering:A, 2016, 670:264-274.
相似文献/References:
[1]潘文瀚,许明三,韦铁平,等.选区激光熔化AlSi10Mg拱形点阵成形工艺优化[J].福建工程学院学报,2024,22(03):291.[doi:10.3969/j.issn.2097-3853.2024.03.013]
PAN Wenhan,XU Mingsan,WEI Tieping,et al.Optimization of selective laser melting AlSi10Mg arch lattice forming process[J].Journal of FuJian University of Technology,2024,22(04):291.[doi:10.3969/j.issn.2097-3853.2024.03.013]