[1]林志熙.一种改进的二次曲线轮廓度误差的评定方法[J].福建工程学院学报,2020,18(04):381-386.[doi:10.3969/j.issn.1672-4348.2020.04.014]
 LIN Zhixi.An improved evaluation method for profile error of quadratic curve line[J].Journal of FuJian University of Technology,2020,18(04):381-386.[doi:10.3969/j.issn.1672-4348.2020.04.014]
点击复制

一种改进的二次曲线轮廓度误差的评定方法()
分享到:

《福建工程学院学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第18卷
期数:
2020年04期
页码:
381-386
栏目:
出版日期:
2020-08-25

文章信息/Info

Title:
An improved evaluation method for profile error of quadratic curve line
作者:
林志熙
福建工程学院机械与汽车工程学院
Author(s):
LIN Zhixi
School of Mechanical and Automotive Engineering, Fujian University of Technology
关键词:
线轮廓度MATLAB最小条件法二次曲线
Keywords:
line profile MATLABminimal condition method quadratic curve
分类号:
TB92
DOI:
10.3969/j.issn.1672-4348.2020.04.014
文献标志码:
A
摘要:
提出了一种改进的二次曲线轮廓度误差的评定方法。以最小二乘曲线的焦点坐标作为中心划分正方形网格,在其中按一定规则设定标志点,若标志点配对拟合曲线计算所得轮廓度误差过大就将其剔除。然后在误差较小的区域进一步细分网格并配对拟合曲线,再以多次迭代运算的方法最终求得最小条件法下的轮廓度误差值。该方法搜索速度快,计算精度高,适用于任意平面二次曲线的轮廓度误差评定,辅以MATLAB软件实现误差求解的可视化,最后实例证明该算法的可靠性。
Abstract:
An improved evaluation method for profile error of quadratic curve was proposed. The coordinates of the focus of the least squares curve was taken as the center to divide the square grid, in which mark points were arranged around the focus according to a certain rule, and if the profile error calculated from the matched fitting curve of the mark point was too large, the point would be eliminated.The grid was then further subdivided in areas with smaller errors and the fitted curves were paired.At last, the profile error under the minimum condition method could be calculated by the method of multiple iterative operations. The method is fast in search, high in calculation accuracy, and is suitable for the evaluation of profile error of any plane’s quadratic curve.Visualization of error solving can be realized with the MATLAB software. Test results show the reliability of the algorithm.

参考文献/References:

[1] 陆辛成, 黄美发, 唐哲敏, 等. 一种基于最小条件的线轮廓度误差评定方法[J]. 中国机械工程, 2018, 29(19): 2320-2326.[2] 易建. 应用差分进化算法评定椭圆轮廓度误差[J]. 机械设计与制造, 2016(9): 61-63, 68.[3] 路坦, 高雷, 安涛, 等. 基于CMM的线轮廓度误差测量与评定技术[J]. 组合机床与自动化加工技术, 2011(10): 75-77.[4] 雷贤卿, 崔静伟, 王海洋. 椭圆轮廓度误差几何遍历搜索算法[J]. 河南科技大学学报(自然科学版), 2014, 35(6): 4-5, 9-13.[5] 国家质量监督检验检疫总局. 产品几何量技术规范(GPS)形状和位置公差检测规定: GB/T1958—2018[S]. 北京: 中国标准出版社, 2018[6] 王伯平. 互换性与测量技术基础[M]. 北京: 机械工业出版社, 2000: 75.[7] 王宇华. 椭圆轮廓的评定方法及其计算机模拟[J]. 佛山大学学报, 1992, 10(6): 27-31.[8] 江泽林, 刘维. 实战MATLAB之文件与数据接口技术[M]. 北京: 北京航空航天大学出版社, 2014: 397-412.[9] 丁喜波, 祖国成. 形状误差统一判别准则的探索[J]. 哈尔滨科学技术大学学报, 1989(3): 24-27. [10] 〖ZK(〗王海洋. 空间任意位置抛物面天线反射面的误差评定技术[D]. 洛阳: 河南科技大学, 2014.

相似文献/References:

[1]林志熙、张水金、王愉灵、杨江.MATLAB环境下加工误差采集与统计分析平台的研发[J].福建工程学院学报,2019,17(06):565.[doi:10.3969/j.issn.1672-4348.2019.06.010]
 LIN Zhixi,ZHANG Shuijin,WANG Yuling,et al.Design of data collection and statistical analysis of machining error in MATLAB[J].Journal of FuJian University of Technology,2019,17(04):565.[doi:10.3969/j.issn.1672-4348.2019.06.010]
[2]黄鼎键、杨华山、林辰耀、钟勇、王尚湋.融合超声传感与视觉图像的智能小车避障设计[J].福建工程学院学报,2021,19(06):511.[doi:10.3969/j.issn.1672-4348.2021.06.001]
 HUANG Dingjian,YANG Huashan,LIN Chenyao,et al.Obstacle avoidance design of intelligent vehicles integrating 〖JZ〗ultrasonic sensing and visual image[J].Journal of FuJian University of Technology,2021,19(04):511.[doi:10.3969/j.issn.1672-4348.2021.06.001]
[3]张友渊,刘丽桑,柯程扬,等.基于改进双闭环模糊PID控制算法的桥式起重机控制系统[J].福建工程学院学报,2024,22(03):258.[doi:10.3969/j.issn.2097-3853.2024.03.008]
 ZHANG Youyuan,LIU Lisang,KE Chengyang,et al.Overhead crane control system based on improved dual-loop fuzzy PID control algorithm[J].Journal of FuJian University of Technology,2024,22(04):258.[doi:10.3969/j.issn.2097-3853.2024.03.008]

更新日期/Last Update: 2020-08-25