参考文献/References:
[1] 刘建伟, 王园方, 罗雄麟. 深度记忆网络研究进展[EB/OL]. 计算机学报, 2020:1-52[2020-08-11]. http:∥kns.cnki.net/kcms/detail/11. 1826.TP.20200114.1543.004.html. [2] HONAVAR V, UHR L. Artificial intelligence and neural networks-steps toward principled integration[J]. Science, 1994, 9(3): 545-548.[3] CHEN Y, EMER J, SZE V. Using dataflow to optimize energy efficiency of deep neural network accelerators[J]. IEEE Micro, 2017, 37(3): 12-21.[4] 朱虎明, 李佩, 焦李成, 等. 深度神经网络并行化研究综述[J]. 计算机学报, 2018, 41(8): 1861-1881.[5] DING S, SU C,YU J. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.[6] 张禹, 李东升, 董小野, 等. 基于改进BP神经网络面向STEP-NC 2.5D制造特征的智能宏观工艺规划[J]. 机械工程学报, 2020, 56(1): 148-156. [7] ZHAO Y, ZHOU D, YAN H. An improved retrieval method of atmospheric parameter profiles based on the BP neural network[J]. Atmospheric Research, 2018, 213: 389-397.[8] 马力, 王永雄. 基于稀疏化双线性卷积神经网络的细粒度图像分类[J]. 模式识别与人工智能, 2019, 32(4): 336-344.[9] 韩敏, 穆云峰. 基于RBFLN网络的改进RBF神经网络学习算法[J]. 系统工程学报, 2008, 23(6): 764-768. [10] DENTON E, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]∥NIPS. MIT Press, 2014: 1269-1277.[11] LI X, PENG L, YAO X, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J]. Environmental Pollution, 2017, 231: 997-1004.[12] ROY D, PANDA P, ROY K. Tree-CNN: a hierarchical deep convolutional neural network for incremental learning[J]. Neural Networks, 2020, 121: 148-160.[13] 王帅, 王维莹, 陈师哲, 等. 基于全局和局部信息的视频记忆度预测[J]. 软件学报, 2020, 31(7): 1969-1979.[14] 陈铬亮, 徐佳. 基于单词分类的归一化神经网络语言模型研究[J]. 福建工程学院学报, 2016, 14(4): 382-385.[15] RAHELI B, AALAMI M, EL-SHAFIE A, et al. Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River[J]. Environmental Earth Sciences, 2017, 76(14): 1-16. [16] ARJMANDZADEH Z, NAZEMI A, SAFI M. Solving multiobjective random interval programming problems by a capable neural network framework[J]. Applied Intelligence, 2019, 49(4): 1566-1579.[17] 冶忠林, 赵海兴, 张科, 等. 基于邻节点和关系模型优化的网络表示学习[J]. 计算机研究与发展, 2019, 56(12): 2562-2577. [18] 黄德根, 张云霞, 林红梅, 等. 基于规则推理网络的分类模型[J]. 软件学报, 2020, 31(4): 1063-1078.