[1]杨文勇.用于机器人目标跟踪的压缩感知的改进算法[J].福建工程学院学报,2014,12(06):573-576,594.[doi:10.3969/j.issn.1672-4348.2014.06.013]
 Yang Wenyong.Improved algorithm for compressive sensing in robot target tracking[J].Journal of FuJian University of Technology,2014,12(06):573-576,594.[doi:10.3969/j.issn.1672-4348.2014.06.013]
点击复制

用于机器人目标跟踪的压缩感知的改进算法()
分享到:

福建工程学院学报[ISSN:2097-3853/CN:35-1351/Z]

卷:
第12卷
期数:
2014年06期
页码:
573-576,594
栏目:
出版日期:
2015-01-25

文章信息/Info

Title:
Improved algorithm for compressive sensing in robot target tracking
作者:
杨文勇
厦门城市职业学院电子与信息工程系
Author(s):
Yang Wenyong
Electronics and Information Engineering Department, Xiamen City University
关键词:
机器人 目标跟踪 压缩感知 伽玛变换 算法
Keywords:
robot object tracking compressive sensing gamma transformation algorithm
分类号:
TP242
DOI:
10.3969/j.issn.1672-4348.2014.06.013
文献标志码:
A
摘要:
针对机器人进行目标跟踪时的跟踪算法,对压缩感知在视频目标跟踪中的应用进行了改进,通过对图像进行伽马变换,以平滑图像的明亮程度,使其能够更好适应复杂环境。研究结果表明,改进的算法有效地增加算法的鲁棒性和提高算法的效率。
Abstract:
The application of compressive sensing in video target tracking was improved to update the tracking algorithm of robot target tracking. The images were transformed via gamma to smooth the brightness of the images to adapt to the complex situations. The experimental results show that the improved algorithm can effectively increase the algorithm robustness and improve the efficiency of the algorithm.

参考文献/References:

[1] Magee D. Tracking multiple vehicle using foreground, background and motion models[J]. Image and Vision Compution,2004,22(2):143-155.
[2] Jia L H, J H Z. Improved background subtraction based on novel thresholding[J]. Acta Automatica Sinica,2009,35(4):467-473.
[3] Zhang K, Zhang L, Yang M H. Realtime compressive tracking[C]// Proceedings of the 12th European Computer Vision(Ⅲ)ECCV 2012. Berlin:Springer,2012: 864-877.
[4] Candes E J, Romberg J,Tao T. Robust uncertainty principles: Exact signal recognition from highly incomplete frequency information[J]. IEEE Trans on Info Theory, 2006,52(2):489-509.
[5] Donoho D L. Compressed sensing[J]. IEEE Trans on Info Theory, 2006,52(4):1289-1306.
[6] Candes E J, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE Trans on Info Theory, 2006,52(12):5406-5425.
[7] 朱明,高文,郭立强. 压缩感知理论在图像处理领域的应用[J].中国光学,2011,4(5):441-447.
[8] Achlioptas D. Databasefriendly random projections: JohnsonLindenstrauss with binary coins[J]. Journal of Computer and System Sciences,2003,66(4):671-687.
[9] Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation,2008,28(3):253-263.
[10] Li P, Hastie T J, Church K W. Very sparse random projections[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2006:287-296.
[11] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.
[12] Diaconis P, Freedman D. Asymptotics of graphical projection pursuit[J]. The Annals of Statistics,1984,12(3):793-815.

相似文献/References:

[1]翁伟.基于人工智能的机器人折弯机滑块行程研究[J].福建工程学院学报,2016,14(03):232.[doi:10.3969/j.issn.1672-4348.2016.03.006]
 Weng Wei.Research on the slider stroke of robot bending machine based on artificial intelligence[J].Journal of FuJian University of Technology,2016,14(06):232.[doi:10.3969/j.issn.1672-4348.2016.03.006]

更新日期/Last Update: 2014-12-25