参考文献/References:
[1] 严利鑫, 胡鑫辉, 刘清梅, 等. 道路交通事故严重程度预测及致因分析 [J]. 华东交通大学学报, 2024, 41(5):65-73.[2] ZHANG K,GUO Y M. Attention-based residual dilated network for traffic accident prediction[J]. Mathematics,2023,11(9):2011.[3] JIN Z X,NOH B. From prediction to prevention:leveraging deep learning in traffic accident prediction systems[J]. Electronics,2023,12(20):4335.[4] 于翔海,白佃国,于光,等. 基于XGBoost模型的城市道路实时交通事故风险预测研究[J]. 公路交通科技,2023,40(4):237-247.[5] 陈喜群,沈楼涛,李俊懿,等. 基于异构数据特征的城市轨道交通OD客流短时预测方法[J]. 交通信息与安全,2024,42(2):158-165.[6] EVEN S,ALBAYRAK A. Traffic accident severity prediction with ensemble learning methods[J]. Computers and Electrical Engineering,2024,114:109101.[7] UGUZ S, BUYUKGOKOGLAN E. A hybrid CNNLSTM model for traffic accident frequency forecasting during the tourist season [J]. Tehnicki VjesnikTechnical Gazette, 2022, 29(6): 2083-2089.[8] XU X C,JIN X F,XIAO D Q,et al. A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction[J]. Journal of Intelligent Transportation Systems,2023,27(1):1-18.[9] VLAHOGIANNI E I,KARLAFTIS M G,GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction:a genetic approach[J]. Transportation Research Part C:Emerging Technologies,2005,13(3):211-234.[10] QIU C Y,WANG C L,FANG B X,et al. Amultiobjective particle swarm optimizationbased partial classification for accident severity analysis[J]. Applied Artificial Intelligence,2014,28(6):555-576.[11] SOWMYA R,PREMKUMAR M,JANGIR P. Newtonraphsonbased optimizer:a new populationbased metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence,2024,128:107532.[12] CHENG S Y, LIU Y A. Research on transportation mode recognition based on multihead attention temporal convolutional network [J]. Sensors, 2023, 23(7):3585.
相似文献/References:
[1]贺肖,陈伯辉,沈斐敏.基于灰色马尔科夫链的道路交通死亡率预测[J].福建理工大学学报,2013,11(06):592.
[2]张扬永.基于TS-NN模型的道路交通车流量预测[J].福建理工大学学报,2021,19(06):560.[doi:10.3969/j.issn.1672-4348.2021.06.010]
ZHANG Yangyong.Prediction of road traffic flow based on the TS-NN model[J].Journal of Fujian University of Technology;,2021,19(06):560.[doi:10.3969/j.issn.1672-4348.2021.06.010]