[1]刘振宇,黄靖,陈梦飞,等.基于深度学习的双孢菇工业识别方法[J].福建理工大学学报,2025,23(06):591-598.[doi:10.3969/j.issn.2097-3853.2025.06.012]
 LIU Zhenyu,HUANG Jing,CHEN Mengfei,et al.Industrial identification method of Agaricus bisporus based on deep learning[J].Journal of Fujian University of Technology;,2025,23(06):591-598.[doi:10.3969/j.issn.2097-3853.2025.06.012]
点击复制

基于深度学习的双孢菇工业识别方法()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年06期
页码:
591-598
栏目:
出版日期:
2025-12-25

文章信息/Info

Title:
Industrial identification method of Agaricus bisporus based on deep learning
作者:
刘振宇黄靖陈梦飞翟振林连海俊叶荣坤
福建水利电力职业技术学院
Author(s):
LIU Zhenyu HUANG Jing CHEN Mengfei ZHAI Zhenlin LIAN Haijun YE Rongkun
Faculty of Electromechanical Engineering, Fujian College of Water Conservancy and Electric Power
关键词:
双孢菇识别SIAF-YOLOv8AFPNSimAM三维注意力机制
Keywords:
identification of Agaricus bisporusSIAF-YOLOv8AFPNSimAM 3D attention mechanism
分类号:
TP391.4;S2
DOI:
10.3969/j.issn.2097-3853.2025.06.012
文献标志码:
A
摘要:
针对工业化双孢菇培育中人工识别方法效率低、质量不稳定等问题,提出一种改进的SIAF-YOLOv8双孢菇识别算法,实现自动化精准检测需求。首先基于4 层渐近特征金字塔网络(AFPN)重构特征融合结构,通过多层级特征交互减少语义差距;其次在骨干网络嵌入SimAM三维注意力机制,实现无参量特征自适应加权。采用自建双孢菇数据集(2 111 幅图像,60 053 个样本)进行验证,结果表明:改进算法AP50 和AP50-95 分别达到98.5%和85.7%,较原YOLOv8n 提升1.0%、4.6%;模型权重减至5.6 MB,单图推理时间12 ms,对比当前几种通用目标检测算法,SIAF-YOLOv8 在检测精度、速度与模型轻量化方面实现最优平衡,可为农业机器人视觉系统提供有效解决方案。
Abstract:
To address the challenges of low efficiency and unstable quality associated with manual identification methods in industrial bisporus mushroom cultivation, an enhanced SIAF-YOLOv8 algorithm for bisporus mushroom identification was developed to achieve automatic and precise detection. First, the feature fusion architecture was restructured using a four-layer asymptotic feature pyramid network (AFPN), thereby reducing the semantic gap through multi-level feature interaction. Second, the SimAM 3D attention mechanism was integrated into the backbone network to enable adaptive parametric feature weighting. A self-built dataset comprising 2 111 images and 60 053 samples of Agaricus bisporus was utilized for validation. Results show that the improved algorithm achieved AP50 and AP50-95 scores of 98.5% and 85.7%, respectively, representing improvement of 1.0% and 4.6% over the original YOLOv8n. Additionally, the model size was reduced to 5.6 MB, with a single-image inference time of 12ms. Compared to several contemporary general-purpose object detection algorithms, SIAF-YOLOv8 offers an optimal balance between detection accuracy, speed, and model compactness, providing an effective solution for agricultural robot vision systems.

参考文献/References:

[1] LI C T,XU S. Edible mushroom industry in China:current state and perspectives[J]. Applied Microbiology and Biotechnology,2022,106(11):3949-3955.[2] 刘雪,莫桐桐,郑文瑞,等. 双孢菇生产智能控制技术研究现状及发展趋势[J]. 智慧农业导刊,2023,3(2):7-12.[3] 王磊磊,王斌,李东晓,等. 基于改进YOLOv5的菇房平菇目标检测与分类研究[J]. 农业工程学报,2023,39(17):163-171.[4] 华金. 基于机器视觉的双孢菇品质检测与分级方法研究[D]. 淄博:山东理工大学,2024. [5] 韩瑞青. 基于深度视觉的成簇双孢菇采摘方法研究[D]. 哈尔滨:哈尔滨工业大学,2023.[6] 吕强,林刚,蒋杰,等. 基于改进YOLOv5s模型的自然场景中绿色柑橘果实检测[J]. 农业工程学报,2024,40(18):147-154.[7] 杨震宇,汪小旵,祁子涵,等. 基于改进YOLOv8的草莓识别与果梗采摘关键点检测[J]. 农业工程学报,2024,40(18):167-175.[8] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.[9] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2025-01-02]. https:∥arxiv.org/obs/1804.02767. [10] LI C Y,LI L L,JIANG H L,et al. YOLOv6:a single-stage object detection framework for industrial applications[EB/OL].(2022-09-07)[2025-01-02].https:∥arxiv.org/abs/2209.02976.[11] WANG A,CHEN H,LIU L H,et al. YOLOv10:real-time end-to-end object detection[EB/OL].(2024-05-23)[2025-01-10].https:∥arxiv.org/abs/2405.14458.

更新日期/Last Update: 2025-12-25