[1]李佳鹏,李海林,毛承龙,等.温度对Ge1-xSnx光电材料的能带调控机理研究[J].福建理工大学学报,2025,23(06):571-577.[doi:10.3969/j.issn.2097-3853.2025.06.009]
 LI Jiapeng,LI Hailin,MAO Chenglong,et al.Modulation mechanism of energy band structure in Ge1-xSnx optoelectronic materials by temperature[J].Journal of Fujian University of Technology;,2025,23(06):571-577.[doi:10.3969/j.issn.2097-3853.2025.06.009]
点击复制

温度对Ge1-xSnx光电材料的能带调控机理研究()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年06期
页码:
571-577
栏目:
出版日期:
2025-12-25

文章信息/Info

Title:
Modulation mechanism of energy band structure in Ge1-xSnx optoelectronic materials by temperature
作者:
李佳鹏李海林毛承龙孙钦钦黎琼钰谢文明黄诗浩
福建理工大学电子电气与物理学院
Author(s):
LI Jiapeng LI Hailin MAO Chenglong SUN Qinqin LI Qiongyu XIE Wenming HUANG Shihao
School of Electronic, Electrical Engineering and Physics, Fujian University of Technology
关键词:
能带结构Ge1-xSnx光电材料30阶k·p微扰理论温度
Keywords:
energy band structureGe1-xSnx materials30th order k-p perturbation theorytemperature
分类号:
TB321;O469
DOI:
10.3969/j.issn.2097-3853.2025.06.009
文献标志码:
A
摘要:
应用30 阶k·p 微扰理论研究不同温度下的Ge1-xSnx能带结构。结果表明,特定温度下,提高Sn组分有利于将间接带Ge1-x Snx调控为直接带隙材料,并且温度越高转换为直接带隙材料所需的Sn组分越低。对于给定Sn组分,提高温度有利于将间接带Ge1-xSnx调控为直接带隙材料,也有利于减小直接带Ge1-xSnxL能谷的电子填充效应对Γ能谷的影响。其唯象模型、计算方法与定量结果可为Ge1-xSnx光电材料的表征、性质分析与器件的设计提供理论指导。
Abstract:
The energy band structure of Ge1-xSnx at different temperatures was investigated based on 30th-order k·p perturbation theory. Results show that increasing the Sn composition is favorable to modulate the indirect-band Ge1-xSnx materials into direct-band materials at a given temperature, and the higher the temperature, the lower the Sn composition is required to convert indirect-band of Ge1-xSnx materials into direct-band materials. For a given Sn component, increasing the temperature is favorable to modulate the indirect-band Ge1-xSnx materials into direct-band materials, and it is also favorable to reduce the influence of the electron filling effect of the L-energy valley on the Γ-energy valley of the direct-band Ge1-xSnx materials. The phenomenology model, calculation method and quantitative results can provide theoretical guidance for the characterization, property analysis and device design of Ge1-xSnx optoelectronic materials.

参考文献/References:

[1] YAMAMOTO Y,WEN W C,TILLACK B. Heteroepitaxy of group IV materials for future device application[J]. Japanese Journal of Applied Physics,2023,62:SC0805.[2] TURNER E M,CAMPBELL Q,PIZARRO J,et al. Controlled formation of stacked Si quantum dots in vertical SiGe nanowires[J]. Nano Letters,2021,21(19):7905-7912.[3] SRINIVASAN S A, PORRET C, VISSERSE, et al. High absorption contrast quantum confined stark effect in ultrathin Ge/SiGe quantum well stacks grown on Si[J]. IEEE Journal of Quantum Electronics,2020, 56(1):5200207.[4] KONDRATENKO S,DATSENKO O,KUCHUK A V,et al. Photoconductivity of GeSn thin films with up to 15% Sn content[J]. Physical Review Materials,2023,7(7):074604.[5] CHANG G E,YU S Q,SUN G. “GeSn rule23”:the performance limit of GeSn infrared photodiodes[J]. Sensors,2023,23(17):7386.[6] WU Y,HOU B W,CHEN Y,et al. Strong electronphonon coupling influences carrier transport and thermoelectric performances in groupIV/V elemental monolayers[J]. NPJ Computational Materials,2021,7:145. [7] RAO M V. Firstprinciples calculations to investigate band structure and effective masses of direct bandgap hexagonal GeSn alloys[J]. International Journal of Modern Physics B,2024,38(14):2450171.[8] WEN S M,ZHANG X Y,ZHAO C W,et al. Electronic structure and optical properties of Ge96-xSnx(0≤x≤50):a firstprinciples study[J]. Materials Today Communications,2021,28:102499.[9] O’HALLORAN E J,BRODERICK C A,TANNER D S P,et al. Comparison of first principles and semiempirical models of the structural and electronic properties of Ge1-xSnx alloys[J]. Optical and Quantum Electronics,2019,51(9):314.[10] YANG W,SONG J J,REN Y,et al. Band structure model of modified Ge for optical device application[J]. Acta Physica Sinica,2018,67(19):198502.[11] SONG Z G,FAN W J,TAN C S,et al. Band structure of Ge1-xSnx alloy:a fullzone 30band k · p model[J]. New Journal of Physics,2019,21(7):073037.[12] VIA L,LOGOTHETIDIS S,CARDONA M. Temperature dependence of the dielectric function of germanium[J]. Physical Review B,1984,30(4):1979-1991.[13] BERTRAND M,THAI Q M,CHR?TIEN J,et al. Experimental calibration of Snrelated varshni parameters for high Sn content GeSn layers[J]. Annalen der Physik,2019,531(6):1800396.[14] SCHAROCH P,JANIK N,WI?NIEWSKI M,et al. Electronic band structure of semiconductor alloys:from ab initio to k·p via computational alchemy,on example of Ge1-xSnx alloy[J]. Computational Materials Science,2021,187:110052.[15] GHETMIRI S A,DU W,MARGETIS J,et al. Directbandgap GeSn grown on silicon with 2230 nm photoluminescence[J]. Applied Physics Letters,2014,105(15):151109.[16] RYU M Y,HARRIS T R,YEO Y K,et al. Temperaturedependent photoluminescence of Ge/Si and Ge1-ySny/Si,indicating possible indirecttodirect bandgap transition at lower Sn content[J]. Applied Physics Letters, 2013,102(17):171908.[17] LIU S Q,YEN S T. Extraction of eightband k·p parameters from empirical pseudopotentials for GeSn[J]. Journal of Applished Physics, 2019,125(24):245701.[18] TRAN T T,PASTOR D,GANDHI H H,et al. Synthesis of Ge1-xSnx alloys by ion implantation and pulsed laser melting:towards a group IV direct bandgap material[J]. Journal of Applished Physics, 2016,119(18):183102.[19] ROGOWICZ E,KOPACZEK J,KUTROWSKAGIRZYCKA J,et al. Carrier dynamics in thin germaniumtin epilayers[J]. ACS Applied Electronic Materials,2021,3(1):344-352.[20] 孙钦钦, 黄诗浩. 张应变Ge1-xSnx合金导带结构调控[J]. 激光与光电子学进展, 2020, 57(9): 156-163.[21] GAWARECKI K, SCHAROCH P, Wi?NIEWSKI M, et al. Invariant expansion of the 30band k.p model and its paramet〖HJ〗ers for IIIV compounds[J]. Physical Review B, 2022, 105(4): 45202.

更新日期/Last Update: 2025-12-25