[1]王恒,郭敏,陈军浩.不同砂粒含量和粒径下含砂黏土塑性与不排水强度影响试验[J].福建理工大学学报,2025,23(06):519-527.[doi:10.3969/j.issn.2097-3853.2025.06.002]
 WANG Heng,GUO Min,CHEN Junhao.Experimental study on plasticity and its relationship with undrained strength of sandy clay under different sand content and particle size[J].Journal of Fujian University of Technology;,2025,23(06):519-527.[doi:10.3969/j.issn.2097-3853.2025.06.002]
点击复制

不同砂粒含量和粒径下含砂黏土塑性与不排水强度影响试验()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年06期
页码:
519-527
栏目:
出版日期:
2025-12-25

文章信息/Info

Title:
Experimental study on plasticity and its relationship with undrained strength of sandy clay under different sand content and particle size
作者:
王恒郭敏陈军浩
福建理工大学土木工程学院
Author(s):
WANG Heng GUO Min CHEN Junhao
School of Civil Engineering, Fujian University of Technology
关键词:
含砂黏土砂粒含量砂粒粒径液限不排水强度
Keywords:
sandy claysand contentsand particle sizeliquid limitundrained strength
分类号:
TU411
DOI:
10.3969/j.issn.2097-3853.2025.06.002
文献标志码:
A
摘要:
通过开展含砂黏土的落锥试验,探究含砂黏土塑性与不排水强度的内在联系随砂粒含量和粒径的演变规律。研究结果表明:含砂黏土液限随砂粒含量的增加而线性减小,砂粒粒径越大,含砂黏土液限越小。当w砂>0% 的含砂黏土不排水强度与黏土含水率关系曲线和w砂=0% 的含砂黏土不排水强度与黏土含水率关系曲线重合时,含砂黏土不排水强度以黏土不排水强度控制为主。当w砂>0% 的含砂黏土不排水强度与黏土含水率关系曲线偏离w砂=0%的含砂黏土不排水强度与黏土含水率关系曲线时,含砂黏土不排水强度由黏土基质的不排水强度与砂粒骨架的承载作用共同构成。最后,提出与黏土液限、砂粒含量和粒径定量相关的含砂黏土不排水强度预测公式,并进行验证,计算得到的不排水强度预测值约为实测值的0.8 ~1.2 倍。随着砂粒含量增加,砂粒接触形成骨架结构是含砂黏土不排水强度发生突变的主要原因。
Abstract:
To investigate the evolution of the internal relationship between plasticity and undrained strength of sandy clay, fall cone tests were conducted on samples with varying sand contents and particle sizes. Results show that the liquid limit of sandy clay decreases linearly as sand content increases, and that larger sand particle sizes result in a lower liquid limit. When the curve of undrained strength versus water content for sandy clay with a sand content (w砂>0%) aligns with that for hosted clay (w砂=0%), the undrained strength is primarily governed by the hosted clay. However, when the curve of undrained strength versus water content for sandy clay with w砂>0% deviates from the curve of undrained strength versus water content of hosted clay, the sand particles begin to contribute more to the overall strength, forming a skeletal structure that enhances the undrained strength. Based on these findings, an equation for predicting the undrained strength of sandy clay was proposed, which quantitatively relates the undrained strength to the liquid limit of the hosted clay, sand content, and particle size. This equation was validated, and the predicted undrained strength values were approximately 0.8 to 1.2 times the measured values. As sand content increases, the development of the sand particle skeleton becomes the primary factor driving a sudden increase in the undrained strength of sandy clay.

参考文献/References:

[1] 中华人民共和国水利部. 中国水利统计年鉴2023[M]. 北京:中国水利水电出版社,2023.[2] 李东义,徐勇航,王爱军,等. 福建安海湾表层沉积物粒度特征及其现代沉积过程分析[J]. 沉积学报,2015,33(4):724-734.[3] 王兆夺,于东生. 泉州湾表层沉积物粒度特征分析[J]. 应用海洋学学报,2015,34(3):326-333.[4] 刘治帅. 厦门海域沉积物特征、输运趋势及其环境意义[D]. 南京:南京大学,2012.[5] HANSBO S. A new approach to the determination of the shear strength of clay by the fallcone test[J]. Swedish Geotech Institute Proc, Stockholm, 1957, 14: 1-48. [6] 殷杰,高玉峰,洪振舜. 基于落锥试验的黏性土不排水强度预测方法[J]. 岩土工程学报,2009,31(10):1626-1630.[7] 王亮,谢健,张楠,等. 含水率对重塑淤泥不排水强度性质的影响[J]. 岩土力学,2012,33(10):2973-2978.[8] CABALAR A F,MUSTAFA W S. Fall cone tests on claysand mixtures[J]. Engineering Geology,2015,192:154-165.[9] KARAKAN E,SHIMOBE S,SEZER A. Effect of clay fraction and mineralogy on fall cone results of claysand mixtures[J]. Engineering Geology,2020,279:105887.[10] SHI X S,YIN J H. Estimation of hydraulic conductivity of saturated sandmarine clay mixtures with a homogenization approach[J]. International Journal of Geomechanics,2018,18(7):04018082.[11] CABALAR A F,KHALAF M M,ISIK H. A comparative study on the undrained shear strength results of fall cone and vane shear tests in sandclay mixtures[J]. Arabian Journal of Geosciences,2020,13(11):395.[12] BSI, BS 1377-2. Methods of test for soils for civil engineering purposes[S]. London: British Standards Institution, 1990. [13] DENG Y F,WU Z L,CUI Y J,et al. Sand fraction effect on hydromechanical behavior of sandclay mixture[J]. Applied Clay Science,2017,135:355-361.[14] HRUBESOVA E,LUNACKOVA B,MOHYLA M. Mohajerani method:tool for determining the liquid limit of soils using fall cone test results with strong correlation with the Casagrande test[J]. Engineering Geology,2020,278:105852.[15] KUMAR G V,WOOD D M. Fall cone and compression tests on clay±gravel mixtures[J]. Geotechnique,1999,49(6):727-739.[16] SIVAPULLAIAH P V,SRIDHARAN A,STALIN V K. Hydraulic conductivity of bentonitesand mixtures[J]. Canadian Geotechnical Journal,2000,37(2):406-413.[17] GAO M Y,JI F,HONG Z S,et al. Changing law of permeability coefficient during compression for reconstituted sandy clays[J]. Marine Georesources & Geotechnology,2024,42(11):1651-1659.[18] WOOD D M. Some fall-cone tests[J]. Geotechnique,1985,35(1):64-68. [19] GAO M Y,NI J J,HONG Z S. Interrelation between compressibility and permeability of reconstituted sandy clays with different sand fractions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2025,17(4):2461-2473.[20] HONG Z S, LIU H L, NEGAMI T.Remolded undrained strength of soils[J]. China Ocean Engineering,2003,1(17): 133-142.

更新日期/Last Update: 2025-12-25