参考文献/References:
[1] 刘石坚,邹峥,廖胜辉,等. 一种牙齿网格分割模型的训练方法及终端:CN117095145A[P]. 2023-11-21. [2] BENHAMADOU A,SMAOUI O,REKIK A,et al. 3DTeethSeg’22:3D teeth scan segmentation and labeling challenge[EB/OL]. 2023:2305.18277.https:∥arxiv.org/abs/2305.18277v1.[3] ZOU B J,LIU S J,LIAO S H,et al. Interactive tooth partition of dental mesh base on tooth-target harmonic field[J]. Computers in Biology and Medicine,2015,56:132-144.[4] LIU S J,KANG C M,HUANG F H,et al. Mesh segmentation for individual teeth based on two-stream GCN with self-attention[J]. IEEE Access,2024,12:76735-76743.[5] 许煜濠,刘石坚,康朝明,等. 三维深度学习网络的几何差异感知能力[J]. 福建理工大学学报,2023,21(6):592-597.[6] 邹峥,吴连杰,刘石坚. 基于深度边界感知的交互式牙齿网格分割方法[J]. 福建师范大学学报(自然科学版),2024,40(6):30-39.[7] ZANJANI FG,POURTAHERIAN A,ZINGER S,et al. Mask-MCNet:tooth instance segmentation in 3D point clouds of intra-oral scans[J]. Neurocomputing,2021,453:286-298.[8] CUI Z M,LI C J,CHEN N L,et al. TSegNet:an efficient and accurate tooth segmentation network on 3D dental model[J]. Medical Image Analysis,2021,69:101949. [9] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 51055114.[10] LIAN C F,WANG L,WU T H,et al. Deep multiscale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners[J]. IEEE Transactions on Medical Imaging,2020,39(7):2440-2450.[11] ZHAO Y,ZHANG L M,YANG C S,et al. 3D Dental model segmentation with graph attentional convolution network[J]. Pattern Recognition Letters,2021,152:79-85. [12] ZHAO Y,ZHANG L M,LIU Y,et al. Two-stream graph convolutional network for intra-oral scanner image segmentation[J]. IEEE Transactions on Medical Imaging,2022,41(4):826-835. [13] ZHENG Y Y,CHEN B J,SHEN Y F,et al. TeethGNN:semantic 3D teeth segmentation with graph neural networks[J]. IEEE Transactions on Visualization and Computer Graphics,2023,29(7):3158-3168. [14] DUAN F,CHEN L. 3D dental mesh segmentation using semantics-based feature learning with graph-transformer[M]∥Lecture Notes in Computer Science. Cham:Springer,2023:456-465.[15] GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics[C]∥Proceedings of the 24th Annual conference on computer graphics and interactive techniques (SIGGRAPH ’97). USA: ACM Press, 1997, 209-216.
相似文献/References:
[1]成晓元,凌静秀,黄继辉,等.土仓压力与掘进参数相关性分析及预测模型[J].福建理工大学学报,2022,20(01):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
CHENG Xiaoyuan,LING Jingxiu,HUANG Jihui,et al.Correlation analysis and prediction model of chamber earth pressure and excavation parameters[J].Journal of Fujian University of Technology;,2022,20(04):13.[doi:10.3969/j.issn.1672-4348.2022.01.003]
[2]叶建华,唐辉,罗奋翔,等.基于改进MobileNet的咖啡豆缺陷检测[J].福建理工大学学报,2023,21(03):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
YE Jianhua,TANG Hui,LUO Fenxiang,et al.Coffee bean defect detection based on improved MobileNet[J].Journal of Fujian University of Technology;,2023,21(04):257.[doi:10.3969/j.issn.1672-4348.2023.03.009]
[3]郭宝椿,李佐勇,陈健,等.融合长短时记忆与图结构学习的水库水位预测[J].福建理工大学学报,2024,22(01):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]
GUO Baochun,LI Zuoyong,CHEN Jian,et al.Reservoir level prediction via integrating long short-term memory and graph structure learning[J].Journal of Fujian University of Technology;,2024,22(04):90.[doi:10.3969/j.issn.2097-3853.2024.01.013]
[4]于明源,周景亮,曾绍锋,等.基于YOLOv8改进的轴承表面缺陷检测方法[J].福建理工大学学报,2024,22(03):280.[doi:10.3969/j.issn.2097-3853.2024.03.011]
YU Mingyuan,ZHOU Jingliang,ZENG Shaofeng,et al.Improved bearing surface defect detection method based on YOLOv8[J].Journal of Fujian University of Technology;,2024,22(04):280.[doi:10.3969/j.issn.2097-3853.2024.03.011]
[5]许煜濠,刘石坚,康朝明,等.三维深度学习网络的几何差异感知能力[J].福建理工大学学报,2023,21(06):592.[doi:10.3969/j.issn.1672-4348.2023.06.013]
XU Yuhao,LIU Shijian,KANG Chaoming,et al.Geometric difference perception capabilities of 3D deep learning networks[J].Journal of Fujian University of Technology;,2023,21(04):592.[doi:10.3969/j.issn.1672-4348.2023.06.013]