[1]雷虎军,张益僖.考虑地震动水力的高速铁路跨海斜拉桥碰撞效应研究[J].福建理工大学学报,2025,23(04):307-315.[doi:10.3969/j.issn.2097-3853.2025.04.001]
 LEI Hujun,ZHANG Yixi.Study on collision effect of high-speed railway sea-crossing cable-stayed bridge considering ground shaking hydrodynamics[J].Journal of Fujian University of Technology;,2025,23(04):307-315.[doi:10.3969/j.issn.2097-3853.2025.04.001]
点击复制

考虑地震动水力的高速铁路跨海斜拉桥碰撞效应研究()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年04期
页码:
307-315
栏目:
出版日期:
2025-08-25

文章信息/Info

Title:
Study on collision effect of high-speed railway sea-crossing cable-stayed bridge considering ground shaking hydrodynamics
作者:
雷虎军张益僖
福建理工大学土木工程学院
Author(s):
LEI Hujun ZHANG Yixi
School of Civil Engineering, Fujian University of Technology
关键词:
跨海斜拉桥地震动水力碰撞效应纵向碰撞非线性分析
Keywords:
sea-crossing cable-stayed bridge ground shaking hydraulics collision effect longitudinal collision nonlinear analysis
分类号:
U448.27
DOI:
10.3969/j.issn.2097-3853.2025.04.001
文献标志码:
A
摘要:
为探究地震动水力对桥梁纵向碰撞效应的影响,以某主跨400 m 的跨海斜拉桥为例,将其通过节点地震动水力附加质量于承台和基础,建立考虑地震动水力的水?结构相互作用模型。通过非线性时程分析法,探究高速铁路跨海斜拉桥主、引桥伸缩缝处碰撞效应对桥梁抗震性能的影响。采用Midas Civil建立考虑和不考虑地震动水力有限元模型,并在伸缩缝处添加碰撞单元,沿桥纵向输入地震波对比动水力对主引桥碰撞效应的影响。结果表明:地震动加速度峰值越大,所产生的碰撞效应越大,并且罕遇地震工况下相较于设计地震时碰撞效应至少提高2~3 倍。在考虑动水力时,伸缩缝处碰撞力、塔顶位移以及频谱特性都有明显提升,其中在有地震动水力时塔顶位移响应至少增大30%~40%。从频域角度看,纵向加速度功率谱幅值明显增大,因为群桩的动水力增大了下部结构的惯性力,使塔底的加速度功率谱峰值向低频段偏移。该研究成果可为高速铁路跨海斜拉桥的碰撞研究提供参考。
Abstract:
In order to investigate the influence of ground shaking hydrodynamic force on the longitudinal collision effect of the bridge, a cross-sea cable-stayed bridge with a main span of 400 m was taken as an example. The additional mass of the ground shaking hydrodynamic force through the nodes was applied to the bearing platforms and foundations, so as to establish a water-structure interaction model considering the ground shaking hydrodynamic force. The impact of collision effects at the expansion joints of the main and approach bridges of a high-speed railroad cable-stayed bridge on the seismic performance of the bridge was investigated by means of nonlinear time course analysis. Midas Civil was used to establish a finite element model, with and without considering the ground shaking hydrodynamic model, add collision units at the expansion joints, and then input seismic waves along the longitudinal direction of the bridge to compare the dynamic hydrodynamic effect on the collision effect of the main approach bridge. Results show that the larger the peak ground shaking acceleration, the larger the collision effect, and the collision effect is at least 2~3 times higher in rare earthquakes than in design earthquakes. The collision force at the expansion joint, the tower top displacement, and the spectral characteristics are significantly enhanced when considering the hydrodynamic forces, with the tower top displacement response increasing by at least 30%-40% in the presence of ground shaking hydrodynamic forces. From the perspective of frequency domain, the longitudinal acceleration power spectrum amplitude increases significantly because the dynamic hydraulic force of the group piles increases the inertia force of the substructure, which shifts the peak of the acceleration power spectrum at the bottom of the tower to the lower frequency band. The research findings can provide a certain reference for the study of collision in high-speed railway cross-sea cable-stayed bridges.

参考文献/References:

[1] MOAYYEDI S A,REZAEI H,KALANTARI A,et al. Effects of deckabutment pounding on the seismic fragility curves of boxgirder highway bridges[J]. Journal of Earthquake Engineering,2024,28(8):2188-2217.[2] 闫聚考,李建中,彭天波,等. 大跨度悬索桥主引桥碰撞效应振动台试验及数值研究[J]. 振动与冲击,2017,36(7):234-240,261.[3] 郑国足,焦应乾,石岩,等. 考虑墩–梁碰撞效应的连续刚构桥系统易损性与概率地震风险性分析[J]. 工程科学与技术,2024,56(3):147-159.[4] 张培,赵科,赵维刚,等. 地震作用下斜拉桥不同工况碰撞效应研究[J]. 铁道工程学报,2023,40(5):64-68.[5] WANGP G,HUANG Y R,QU Y,et al. The hydrodynamic pressure analysis and simplified calculation method of added mass of oscillating horizontal cylinder in finite water depth[J]. Ocean Engineering,2024,310:118615.[6] CHEN Y,HUANG X,WU K,et al. Experimental research on dynamic responses and hydrodynamic pressures of deep-water bridge piers under seismic and wave actions[J]. Engineering Structures,2024,313:118276.[7] 吴堃,李忠献. 地震作用下桥墩动水压力及Morison方程适用性试验研究[J]. 工程力学,2022,39(12):41-49.[8] 周敉,江坤,李久龙. 地震作用下不同形式深水桥墩流固耦合效应研究[J]. 振动与冲击,2022,41(21):7-18.[9] TIZ L,WANG H. Hydrodynamic shape optimization of sea-crossing bridge pier under wave force[J]. Ocean Engineering,2024,299:117281.[10] 陈学喜,朱晞,高学奎. 地震作用下桥梁梁体间的碰撞响应分析[J]. 中国铁道科学,2005,26(6):75-79. [11] 张文学,鲍艳,王景景. 伸缩缝间隙及纵向阻尼器对斜拉桥的碰撞影响[J]. 公路交通科技,2012,29(8):60-63.[12] WANGP G,LV S Y,ZHANG C,et al. An analytical method for the solution of earthquakeinduced hydrodynamic forces and wave forces on multiple vertical cylinders with arbitrary smooth sections[J]. Ocean Engineering,2022,263:112440.[13] YANG W L,LI A,DENG L W,et al. Study on characteristics and calculation method of hydrodynamic force on pile group under earthquake[J]. Ocean Engineering,2020,207:107375.[14] YANG W L,LI A,FENG X Y,et al. Calculation method of hydrodynamic force on one column of the twin columns under earthquake[J]. Ocean Engineering,2020,197:106874.[15] 中国地震局. 中国地震动参数区划图: GB18306-2015[S]. 北京: 中国标准出版社,2015.[16] 中华人民共和国铁道部. 铁路工程抗震设计规范: GB50111-2006[S]. 北京: 中国计划出版社,2006.[17] 黎璟,钱永久,杨华平,等. 铁路斜拉桥减隔震方案参数优化研究[J]. 桥梁建设,2019,49(5):45-50.

更新日期/Last Update: 2025-08-25