[1]李天汉,李建兴,杨秋玉,等.基于电流-振动特征自适应融合的BWO-CNN-LSTM断路器故障预测方法[J].福建理工大学学报,2025,23(03):269-276.[doi:10.3969/j.issn.2097-3853.2025.03.009]
 LI Tianhan,LI Jianxing,YANG Qiuyu,et al.Adaptive fusion of current-vibration features based BWO-CNN-LSTM circuit breaker fault prediction approach[J].Journal of Fujian University of Technology;,2025,23(03):269-276.[doi:10.3969/j.issn.2097-3853.2025.03.009]
点击复制

基于电流-振动特征自适应融合的BWO-CNN-LSTM断路器故障预测方法
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第23卷
期数:
2025年03期
页码:
269-276
栏目:
出版日期:
2025-06-25

文章信息/Info

Title:
Adaptive fusion of current-vibration features based BWO-CNN-LSTM circuit breaker fault prediction approach
作者:
李天汉李建兴杨秋玉许广坤
福建理工大学电子电气与物理学院
Author(s):
LI Tianhan LI Jianxing YANG Qiuyu XU Guangkun
School of Electronic, Electric Engineering and Physics, Fujian University of Technology
关键词:
高压断路器自适应特征融合白鲸优化算法CNN-LSTM故障预测
Keywords:
high-voltage circuit breaker adaptive feature fusion beluga whale optimization CNN-LSTM fault prediction
分类号:
TM561
DOI:
10.3969/j.issn.2097-3853.2025.03.009
文献标志码:
A
摘要:
为了提高断路器故障预测结果的可靠性,提出一种基于电流?振动信号特征自适应融合的BWO?CNN?LSTM故障预测方法。首先采用变分模态分解处理振动信号,提取能量熵、样本熵和散布熵等特征;同时提取线圈电流信号的关键特征,通过特征自适应融合技术构建断路器完整动作过程的电流?振动联合信号特征集;随后构建白鲸算法优化的CNN?LSTM故障预测模型,对断路器的不同机械状态进行预测。与其他算法相比,BWO?CNN?LSTM模型在故障预测准确率上显著提高,有效解决了断路器故障预测中对人工经验过于依赖的问题。
Abstract:
In order to improve the reliability of circuit breaker fault prediction results, a BWO-CNN-LSTM fault prediction method based on adaptive fusion of current-vibration signal features is proposed. First, the vibration signal is processed by variational modal decomposition to extract features such as energy entropy, sample entropy and scatter entropy; and the key features of the coil current signal are also extracted, and the feature set of the current-vibration joint signal for the complete action process of the circuit breaker is constructed by feature adaptive fusion technology; subsequently, the CNN-LSTM fault prediction model optimized by the beluga whale optimization is constructed to predict the different mechanical states of the circuit breaker. Results show that compared with other algorithms, the BWO-CNN-LSTM model significantly improves the fault prediction accuracy, effectively solving the problem of manual experience dependence in circuit breaker fault prediction.

参考文献/References:

[1] LI X F,ZHENG X Y,ZHANG T,et al. Robust fault diagnosis of a high-voltage circuit breaker via an ensemble echo state network with evidence fusion[J]. Complex & Intelligent Systems,2023,9(5):5991-6007. [2] JANSSEN A,MAKAREINIS D,SOLVER C E. International surveys on circuit-breaker reliability data for substation and system studies[J]. IEEE Transactions on Power Delivery,2014,29(2):808-814. [3] FLETCHER P L. A summary of the final results and conclusions of the second international enquiry on thereliability of high voltage circuit-breakers[C]∥Second International Conference on the Reliability of Transmission and Distribution Equipment. Coventry,UK: IEE,1995:24-30. [4] 高学金,马东阳,韩华云,等. 基于DAE和TCN的复杂工业过程故障预测[J]. 仪器仪表学报,2021,42(6):140-151.[5] 朱伏平,秦琴,杨方燕,等. 基于信息融合技术的滚动轴承故障预测方法[J]. 机械设计,2023,40(1):56-64.[6] ZHENG X G,LI J X,YANG Q Y,et al. Prediction method of mechanical state of high-voltage circuit breakers based on LSTM-SVM[J]. Electric Power Systems Research,2023,218:109224. [7] ZHANG Q,ZHANG H Y,LU X W. Adaptive feature fusion for small object detection[J]. Applied Sciences,2022,12(22):11854. [8] WANG C,PENG G H,DE BAETS B. Deep feature fusion through adaptive discriminative metric learning for scene recognition[J]. Information Fusion,2020,63:1-12.[9] 张雅晖,杨凯,杨帆. 基于小波包能量分析和信号融合的异步电机转子故障诊断[J]. 电测与仪表,2024,61(4):161-168.[10] SHI J C,REN Y,TANG H S,et al. Hydraulic directional valve fault diagnosis using a weighted adaptive fusion of multi-dimensional features of a multi-sensor[J]. Journal of Zhejiang University:Science A,2022,23(4):257-271. [11] TIAN H,FAN H C,FENG M W,et al. Fault diagnosis of rolling bearing based on HPSO algorithm optimized CNN-LSTM neural network[J]. Sensors,2023,23(14):6508.[12] 张荣升,刘丽桑,徐辉,等. 改进蝠鲼觅食优化算法的配电网故障定位[J]. 福建工程学院学报,2022,20(3):267-274. [13] 〖JP3〗万书亭,马晓棣,豆龙江,等. 基于VMD-MSE的高压断路器故障诊断[J]. 中国工程机械学报,2019,17(5):444-449.[14] ZHONG C T,LI G,MENG Z. Beluga whale optimization:a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems,2022,251:109215. [15] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251. [16] 胡任远,刘建华,王璇,等. 引入双循环机制深度学习模型的文本情感分析[J]. 福建工程学院学报,2022,20(4):383-390. [17] 杨秋玉,阮江军,庄志坚,等. 高压断路器机械振动信号的参数自适应降噪方法[J]. 高电压技术,2021,47(12):4274-4287. [18] 杨秋玉,阮江军,黄道春,等. 基于VMD-Hilbert边际谱能量熵和SVM的高压断路器机械故障诊断[J]. 电机与控制学报,2020,24(3):11-19. [19] RUDSARI F N,RAZI-KAZEMI A A,SHOOREHDELI M A. Fault analysis of high-voltage circuit breakers based on coil current and contact travel waveforms through modified SVM classifier[J]. IEEE Transactions on Power Delivery,2019,34(4):1608-1618. [20] 聂磊,张吕凡,徐诗奕,等. 基于相似度特征融合和CNN的滚动轴承剩余寿命预测[J]. 噪声与振动控制,2023,43(5):115-121.

更新日期/Last Update: 2025-06-25