[1]吴智昊,陈晓明,逯焕杰,等.新型辐射制冷材料——相变蓄冷耦合降温屋面的热性能研究[J].福建理工大学学报,2024,22(04):356-362.[doi:10.3969/j.issn.2097-3853.2024.04.008]
 WU Zhihao,CHEN Xiaoming,LU Huanjie,et al.Thermal performance of a PCM slab roof combined with new radiative cooling materials[J].Journal of Fujian University of Technology;,2024,22(04):356-362.[doi:10.3969/j.issn.2097-3853.2024.04.008]
点击复制

新型辐射制冷材料——相变蓄冷耦合降温屋面的热性能研究
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年04期
页码:
356-362
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
Thermal performance of a PCM slab roof combined with new radiative cooling materials
作者:
吴智昊陈晓明逯焕杰程归
福建理工大学生态环境与城市建设学院
Author(s):
WU Zhihao CHEN Xiaoming LU Huanjie CHENG Gui
School of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
辐射制冷相变耦合降温屋面相变屋面空调供冷量
Keywords:
radiative coolingphase changecombined cooling roofPCM slab roofcooling capacity provided by air-conditioners
分类号:
TK02
DOI:
10.3969/j.issn.2097-3853.2024.04.008
文献标志码:
A
摘要:
为提高相变屋面的蓄冷效率和降温效果,提出了一种新型光谱选择性辐射制冷材料-相变蓄冷耦合降温屋面。建立了耦合降温屋面的数值计算传热模型。以福州地区为研究对象,分析了7种已商业化相变材料耦合降温屋面的热性能,并与无新型光谱选择性辐射制冷材料的传统相变屋面和普通屋面进行对比。结果发现,新型辐射制冷材料可有效降低屋面外表面的温度波动和峰值温度,提高相变材料的潜热利用率。6月1日至9月30日期间,相变材料同为RT25HC的耦合降温屋面比传统相变屋面可减少159%的空调供冷量。室外空气温度与天空有效温度的温差越大,耦合降温屋面相比于传统相变屋面的节能优势越显著。
Abstract:
A PCM slab roof combined with new spectrally selective radiative cooling materials was proposed to improve the cold charging efficiency and cooling effect of PCM slab roof. A computational heat transfer model of the coupled cooling roof was established. Taking Fuzhou area as the research object, the thermal performance of the coupled cooling roofs made of seven commercially available PCMs was investigated and compared with the traditional PCM slab roofs without new radiative cooling materials and ordinary roofs. It is found that the new radiative cooling materials can effectively reduce the temperature fluctuation and peak temperature of the outer surface of the roof, and improve the latent heat utilization rate of the PCM. From June 1 to September 30, the coupled cooling roof with RT25HC PCM can reduce the air conditioning cooling capacity by 159 % compared with the traditional phase change roof. The greater the difference between outside air temperature and effective sky temperature, the more significant the energy saving advantage of the coupled cooling roof compared with the traditional phase change roof.

参考文献/References:

[1] 余才锐,沈冬梅,何伟,等. 基于辐射制冷和微槽道热管的相变墙体实验研究[J]. 太阳能学报,2020,41(4):123-128.[2] 刘伟,李怀,黄巍,等. 基于TRNSYS模拟的某近零能耗办公楼暖通空调系统优化配置分析[J]. 建筑科学,2022,38(4):158-168.[3] LEE K O,MEDINA M A,SUN X Q,et al. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls[J]. Solar Energy,2018,163:113-121.[4] 邹平,姜鲁艳,凌浩恕,等. 应用于日光温室墙体的相变材料热物性优化研究[J]. 太阳能学报,2022,43(9):139-147.[5] LEE K O,MEDINA M A. Using phase change materials for residential air conditioning peak demand reduction and energy conservation in coastal and transitional climates in the State of California[J]. Energy and Buildings,2016,116:69-77.[6] SHARMA V,RAI A C. Performance assessment of residential building envelopes enhanced with phase change materials[J]. Energy and Buildings,2020,208:109664. [7] GUO J Y,ZHANG G L. Investigating the performance of the PCM-integrated building envelope on a seasonal basis[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,124:91-97.[8] SUN X Q,ZHANG Q,MEDINA M A,et al. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB)[J]. Energy Conversion and Management,2014,83:73-78.[9] YIN X B,YANG R G,TAN G,et al. Terrestrial radiative cooling:using the cold universe as a renewable and sustainable energy source[J]. Science,2020,370(6518):786-791.[10] SMITH G,GENTLE A. Radiative cooling:energy savings from the sky[J]. Nature Energy,2017,2(9):17142.[11] MANDAL J,FU Y K,OVERVIG A C,et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science,2018,362(6412):315-319.[12] QIN M L,XIONG F,AFTAB W,et al. Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling[J]. iScience,2022,25(7):104584.[13] ZHAI H T,FAN D S,LI Q. Scalable and paint-format colored coatings for passive radiative cooling[J]. Solar Energy Materials and Solar Cells,2022,245:111853.[14] 路标,陶昌军,向东篱,等. 辐射制冷涂料用于数据中心机房的节能潜力模拟分析[J]. 建筑节能(中英文),2023,51(7):49-54.[15] HU M K,SENG LEE P. Performance evaluation of a passive air conditioning module integrating radiative sky cooling and indirect evaporative cooling[J]. Applied Thermal Engineering,2024,244:122608.[16] LIU Z A,HOU J W,WEI D,et al. Thermal performance analysis of lightweight building walls in different directions integrated with phase change materials (PCM)[J]. Case Studies in Thermal Engineering,2022,40:102536.[17] KE W,JI J,ZHANG C Y,et al. Effects of the PCM layer position on the comprehensive performance of a builtmiddle PV-Trombe wall system for building application in the heating season[J]. Energy,2023,267:126562.[18] ALABSI Z A,HAFIZAL M I M,ISMAIL M. Innovative PCMincorporated foamed concrete panels for walls’ exterior cladding:an experimental assessment in real-weather conditions[J]. Energy and Buildings,2023,288:113003.[19] LU S L,ZHENG J H,WANG R,et al. Thermal performance research on a novel coupled heating system combined solar air heater with ventilation PCM wall[J]. Solar Energy,2023,265:112100.[20] LI D,ZHANG C J,LI Q,et al. Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China[J]. Applied Thermal Engineering,2020,165:114547.[21] KUZNIK F,VIRGONE J. Experimental investigation of wallboard containing phase change material:data for validation of numerical modeling[J]. Energy and Buildings,2009,41(5):561-570.[22] 清华大学DeST开发组. 建筑环境系统模拟分析方法——DeST[M]. 北京:中国建筑工业出版社,2006.

更新日期/Last Update: 2024-08-25