[1]张迪迪,林小英,刘志鹏,等.高效苯系物降解菌群的筛选及其降解性能[J].福建理工大学学报,2024,22(04):349-355.[doi:10.3969/j.issn.2097-3853.2024.04.007]
 ZHANG Didi,LIN Xiaoying,LIU Zhipeng,et al.Screening of efficient benzene-degrading microbial consortia and degradation performance[J].Journal of Fujian University of Technology;,2024,22(04):349-355.[doi:10.3969/j.issn.2097-3853.2024.04.007]
点击复制

高效苯系物降解菌群的筛选及其降解性能
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年04期
页码:
349-355
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
Screening of efficient benzene-degrading microbial consortia and degradation performance
作者:
张迪迪林小英刘志鹏郭涛徐升吴欢
福建理工大学生态环境与城市建设学院
Author(s):
ZHANG DidiLIN Xiaoying LIU Zhipeng GUO Tao XU Sheng WU Huan
School of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
苯系物菌群降解特性动力学
Keywords:
benzene seriesmicrobial consortiadegradation characteristicskinetics
分类号:
X172
DOI:
10.3969/j.issn.2097-3853.2024.04.007
文献标志码:
A
摘要:
从受污染的土壤中富集驯化获得苯系物降解菌群,探究其降解特性并优化降解条件。以苯、甲苯、乙苯和二甲苯作为碳源进行多周期驯化,通过高通量测序技术进行群落结构分析,采用气相色谱法检测菌群对苯的降解性能,通过改变单一因素对降解条件进行优化。驯化后的苯系物降解菌群以假单胞菌属(Pseudomonas)为主,占比56.07%;混合菌群降解苯的最适条件是温度30℃、pH7、苯浓度200mg/L,降解率在80%以上;添加Fe3+、Mn2+离子可强化苯的降解,0.5mg/L的Mn2+和2.0mg/L的Fe3+对苯的降解率分别达到90.97%和86.63%,比添加前提高8.57%和4.23%;菌群对苯的降解过程符合一级动力学方程,菌群降解200mg/L苯的半衰期仅为12.27h。该菌群对苯有较强的降解能力,对苯系物污染场地的修复有一定的应用前景。
Abstract:
A benzene-degrading microbial consortia was obtained from the enrichment and domestication of contaminated soil. Its degradation characteristics were explored and degradation conditions were optimized. Benzene, toluene, ethylbenzene and xylene were used as carbon sources for multi-cycle domestication. Community structure analysis was carried out by high-throughput sequencing technology, the degradation effect of microbial consortia on benzene was detected by gas chromatography, and the degradation conditions were optimized by changing a single factor. The BTEX-degradation microbial consortia after domestication were mainly Pseudomonas, accounting for 56.07%. The optimum conditions for benzene degradation by microbial consortia were an an initial pH of 7, a temperature of 30 ℃ and benzene concentration of 200 mg/L, and the degradation rate was more than 80%. The addition of Fe3+ and Mn2+ ions could enhance the benzene degradation efficiency, and the degradation of benzene by 0.5 mg/L Mn2+ and 2.0 mg/L Fe3+ reached 90.97% and 86.63%, respectively, which were 8.57% and 4.23% higher than before addition. The degradation process of benzene by the microbial consortia conformed to the first-order kinetic equation, and the half-life of the microbial consortia to degrade 200 mg/L benzene was only 12.27 h. This microbial consortia has a strong ability to degrade benzene, and has a certain application prospect for the remediation of benzene contaminated sites.

参考文献/References:

[1] LATIF M T, ABD HAMID H H, AHAMAD F, et al. BTEX compositions and its potential health impacts in Malaysia[J]. Chemosphere, 2019, 237: 124451.[2] FENG S, GONG L, ZHANG Y, et al. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage[J]. Bioresource Technology, 2021, 320: 124329.[3] WANG L J, WANG X Y, WU H, et al. Metabolic modeling of synthetic microbial communities for bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2023, 16: 1-20.[4] PORYUNE K J, PEREZ M C, LVAREZHORNOS J, et al. Contribution of bacterial biodiversity on the operational performance of a styrene biotrickling filter[J]. Chemosphere: Environmental toxicology and risk assessment, 2020, 247: 125800.[5] 马小丽, 岳秀萍, 王国英. 苯系物降解菌群的降解特性分析及模拟应用[J]. 环境科学与技术, 2018, 41(10): 42-46.[6] ZHANG Y, LIU J, CHEN Y, et al. Screening and study of the degradation characteristics of efficient toluene degrading bacteria combinations[J]. Environmental Technology, 2021, 42(21): 3403-3410.[7] QIN Y, HE Y, SHE Q, et al. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm[J]. Nature Communications, 2019, 10(1): 3702.[8] LI J H, DE TOLEDO R A, CHUNG J, et al. Removal of mixture of cis1, 2dichloroethylene/trichloroethylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by Pseudomonas plecoglossicida[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(12): 1934-1940.[9] MUCCEE F, EJAZ S, ROZA N. Toluene degradation via a unique metabolic route in indigenous bacterial species[J]. Archives of Microbiology, 2019, 201(10): 1369-1383.[10] BARIK M, DAS C P, VERMA A K, et al. Metabolic profiling of phenol biodegradation by an indigenous Rhodococcus pyridinivorans strain PDB9T N-1 isolated from paper pulp wastewater[J]. International Biodeterioration & Biodegradation, 2021, 158(2): 105168.[11] WANG Y, WAN S, YU W L, et al. Newly isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 collaborate with selfsecreted biosurfactant to improve solubility and bioavailability for the biodegradation of hydrophobic and toxic gaseous paraxylene[J]. Chemosphere, 2022, 304: 135328.[12] BACOSA H P, MABUHAYOMAR J A, BALISCO R A, et al. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 122.[13] KAUR G, LECKA J, KROL M, et al. Novel BTEXdegrading strains from subsurface soil: Isolation, identification and growth evaluation[J]. Environment Pollution, 2023, 335: 122303.[14] 张磊, 罗启仕, 陈欣, 等. 苯高效降解菌群富集及其降解机理研究[J]. 环境科学学报, 2021, 41(9): 3770-3776.[15] ZHU C Y, YANG W L, HE H J, et al. Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal[J]. Chemosphere, 2018, 200: 380-387.[16] SINGH P, SINGH V K, SINGH R, et al. Biological degradation of toluene by indigenous bacteria Acinetobacter junii CH005 isolated from petroleum contaminated sites in India[J]. Energy, Ecology and Environment, 2018, 3(3): 162-170.[17] 刘雪, 温全宝, 张雷, 等. 一株钠长石分解菌的筛选及其生长特性[J]. 微生物学通报, 2023, 50(5): 1801-1814.[18] 王晓萍, 石贤爱. 尼古丁降解菌株的分离及其降解特性[J]. 福建农林大学学报(自然科学版), 2023, 52(4): 540-545.[19] PSAHI S K, GOKHALE S. Benzene biodegradation by indigenous mixed microbial culture: kinetic modeling and process optimization[J]. International Biodeterioration & Biodegradation, 2017, 119: 511-519.[20] RAJAMANICKAM R, KALIYAMOORTHI K, RAMACHANDRAN N, et al. Batch biodegradation of toluene by mixed microbial consortia and its kinetics[J]. International Biodeterioration & Biodegradation, 2017, 119: 282-288.[21] QIN Y, HE Y, SHE Q, et al. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm[J]. Nature Communications, 2019, 10(1): 3702.[22] LIU N, LI D, LI K, et al Enhanced biodegradation of chlorobenzene via combined Fe3+ and Zn2+ based on rhamnolipid solubilisation[J]. Journal of Environmental Sciences, 2021, 103(5): 108-118.[23] STREESE J, SCHLEGELMILCH M, HEINING K, et al. A macrokinetic model for dimensioning of biofilters for VOC and odour treatment.[J]. Waste Management, 2005, 25(9): 965-974.

更新日期/Last Update: 2024-08-25