[1]陈礼洪,周伟鹏,裴义山,等.基于不同基质人工湿地用于“一级A”尾水提标[J].福建理工大学学报,2024,22(04):341-348.[doi:10.3969/j.issn.2097-3853.2024.04.006]
 CHEN Lihong,ZHOU Weipeng,PEI Yishan,et al.“Grade A” tail water standard improvement based on constructed wetlands with different substrates[J].Journal of Fujian University of Technology;,2024,22(04):341-348.[doi:10.3969/j.issn.2097-3853.2024.04.006]
点击复制

基于不同基质人工湿地用于“一级A”尾水提标
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年04期
页码:
341-348
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
“Grade A” tail water standard improvement based on constructed wetlands with different substrates
作者:
陈礼洪周伟鹏裴义山马世斌蒋柱武林翰
福建理工大学生态环境与城市建设学院
Author(s):
CHEN Lihong1 ZHOU Weipeng1 PEI Yishan1 MA Shibin2 JIANG Zhuwu1 LIN Han
School of Ecological Environment and Urban Construction, Fujian University of Technology
关键词:
人工湿地黄铁矿水力负荷“一级A”尾水
Keywords:
constructed wetlandspyritehydraulic load“Grade A” tailwater
分类号:
TU991
DOI:
10.3969/j.issn.2097-3853.2024.04.006
文献标志码:
A
摘要:
针对人工湿地用于污水厂尾水提标改造中脱氮效率低、关键参数水力负荷不明确等问题,构建了砾石(湿地A)、沸石(湿地B)、沸石+黄铁矿(湿地C)为基质的3组人工湿地,通过改变水力负荷,研究不同基质人工湿地将市政污水厂“一级A”尾水提标至“准Ⅳ类水水质”的限制因素及最优运行水力负荷。结果表明,总氮(totalnitrogen,TN)是限制尾水提标的最关键因素,湿地A、湿地B的最佳运行水力负荷为0.30m/d。只有湿地C能在水力负荷≤1.80m/d条件下稳定达到“Ⅳ类水水质”湖库TN≤1.50mg/L的要求。综合考虑氮磷去除效果和经济用地,得出0.90m/d是湿地C将尾水提标至“准Ⅳ类水水质”的最佳运行水力负荷,为尾水人工湿地实际工程设计、运行、管理及黄铁矿的应用提供重要参考价值。
Abstract:
In response to issues such as low denitrification efficiency and unclear hydraulic load of key parameters in the upgrading and reconstruction of tail water in wastewater treatment plants by constructed wetlands, three groups of constructed wetlands with gravel (wetland A), zeolite (wetland B) and zeolite + pyrite (wetland C) as substrates were constructed. By changing the hydraulic retention time (HRT), the restriction factors and optimum operation hydraulic load of upgrading the “Grade A tail water” of municipal sewage treatment plants to “Quasi-Class Ⅳ water quality” were studied in constructed wetlands with different substrates. The results indicate that total nitrogen (TN) is the most critical factor limiting tailwater elevation, and the optimal operating hydraulic load for wetlands A and B is 0.30 m/d. Only wetland C can stably meet the requirement of TN≤1.50 mg/L for Class IV water quality lakes and reservoirs under hydraulic load≤1.80 m/d. Taking into account the nitrogen and phosphorus removal efficiency and economic land use, it is concluded that 0.90 m/d is the optimal operating hydraulic load for wetland C to elevate the tail water to Class IV water quality. This provides important reference value for the actual engineering design, operation, management, and application of pyrite in the tail water artificial wetland.

参考文献/References:

[1] SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al. Reducing phosphorus to curb lake eutrophication is a success[J]. Environmental Science & Technology, 2016, 50: 8923-8929.[2] 孔令为, 邵卫伟, 梅荣武, 等. 浙江省城镇污水处理厂尾水人工湿地深度提标研究[J].中国给水排水, 2019, 35(2): 39-43.[3] ZHANG P, PENG Y, LU J, et al. Microbial communities and functional genes of nitrogen cycling in an electrolysis augmented constructed wetland treating wastewater treatment plant effluent[J]. Chemosphere, 2018, 211: 25-33.[4] LIANG J, CHEN N, TONG S, et al. Sulfur autotrophic denitrification(SAD) driven by homogeneous composite particles containing CaCO3-type kitchen waste for groundwater remediation[J]. Chemosphere, 2018, 212: 954-963.[5] 乔雯雯, 王宇晖, 宋新山. 黄铁矿强化人工湿地反硝化处理含氮废水的研究[J]. 工业水处理, 2021, 41(4): 77-83.[6] CARREY R, BALLESRE E, Blanch A R, et al. Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater[J]. Water Research, 2021, 188:116537.[7] CAOUA F D, MASCOLO M C, PIROZZI F, et al. Simultaneous denitrification phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter(RPPB)[J]. Chemosphere, 2020, 255: 126977.[8] GE Z B, WEI D Y, ZHANG J, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study[J]. Water Research, 2019, 148: 153-161.[9] 李亚楠. 黄铁矿生物滤池对污水厂尾水深度处理效果和机制研究[D]. 上海:东华大学, 2022.[10] 马容真, 郝庆菊, 翁思佳, 等. 基质填充方式对铁碳-沸石人工湿地水质净化的影响[J]. 环境科学学报, 2023, 43(9): 130-141.[11] 胡傲, 李宇辉, 杨宇静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响[J]. 湖泊科学, 2022, 34(5):1484-1492.[12] 国家环境保护总局.水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.[13] 赵仲婧. 铁碳微电解及沸石添加对曝气人工湿地水质净化和温室气体排放的影响[D]. 重庆:西南大学, 2022.[14] CHEN Y F, SHAO Z Y, KONG Z, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37: 101414.[15] 贺银海. 沸石同步脱氮除磷功能调控及机理研究[D]. 北京:北京科技大学, 2018.

更新日期/Last Update: 2024-08-25