[1]邓志诚,黄卫东,吴仙星.改进中值滤波算法在晶棒图像预处理中的应用[J].福建理工大学学报,2024,22(03):275-279.[doi:10.3969/j.issn.2097-3853.2024.03.010]
DENG Zhicheng,HUANG Weidong,WU Xianxing.Application of improved median filtering algorithm in pre-processing of crystal rod images[J].Journal of Fujian University of Technology;,2024,22(03):275-279.[doi:10.3969/j.issn.2097-3853.2024.03.010]
点击复制
改进中值滤波算法在晶棒图像预处理中的应用()
《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]
- 卷:
-
第22卷
- 期数:
-
2024年03期
- 页码:
-
275-279
- 栏目:
-
- 出版日期:
-
2024-06-25
文章信息/Info
- Title:
-
Application of improved median filtering algorithm in pre-processing of crystal rod images
- 作者:
-
邓志诚; 黄卫东; 吴仙星
-
(福建理工大学)福建省智能加工技术及装备重点实验室
- Author(s):
-
DENG Zhicheng; HUANG Weidong; WU Xianxing
-
Key Laboratory of Intelligent Processing Technology and Equipment in Fujian Province
-
- 关键词:
-
晶棒; 中值滤波; 图像梯度; 峰值信噪比
- Keywords:
-
crystal rod; median filtering; image gradient; PSNR
- 分类号:
-
TP391.4
- DOI:
-
10.3969/j.issn.2097-3853.2024.03.010
- 文献标志码:
-
A
- 摘要:
-
传统的中值滤波算法在晶棒图像处理中无法准确区分噪声和划线特征,导致划线特征过度平滑。为解决该问题,提出了一种基于图像梯度的中值滤波算法。通过引入像素相似度以及图像梯度信息来提高噪声去除的准确性和划线特征保护能力。比较处理后图像的峰值信噪比和划线特征边缘梯度强度,结果显示,经改进算法处理后,图像的划线特征边缘强度和峰值信噪比均高于标准中值滤波和快速加权中值滤波算法,在晶棒图像预处理中性能更优。
- Abstract:
-
Traditional median filtering algorithms cannot accurately distinguish between noise and line features in crystal rod image processing, resulting in excessive smoothing of line features. To address this issue, a median filtering algorithm based on image gradients was proposed. By introducing pixel similarity and image gradient information, the accuracy of noise removal and the ability to protect line features were improved. A comparison was conducted of the peak signal-to-noise ratio and edge gradient intensity of the processed images, and results show that after the improved algorithm processing, the edge intensity and peak signal-to-noise ratio of the line features in the images were higher than those of the standard median filtering and fast weighted median filtering algorithms, and had better performance in the preprocessing of crystal rod images.
参考文献/References:
[1] 胡小亮. 数字图像相关方法的图像影响因素与应用研究[D]. 重庆:重庆大学,2021. [2] 付斌斌. 工业机器视觉的应用与发展趋势[J]. 中国工业和信息化,2021(11):18-24. [3] 包子洪,何爱娇. 自适应中值滤波在噪声图像匹配中的应用[J]. 现代信息科技,2023,7(8):114-116. [4] 王帅,刘光宇,曹禹,等. 改进自适应中值滤波算法的图像去噪研究[J]. 河南科技学院学报(自然科学版),2022,50(6):43-48. [5] 胡珊. 改进自适应加权均值滤波的图像去噪技术探讨[J]. 普洱学院学报,2022,38(6):41-43. [6] 赵高长,张磊,武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学,2011,32(4):678-682. [7] 周杰. 应用于图像处理的中值滤波改进算法[D]. 北京:北京邮电大学,2007. [8] 李敏花,柏猛,吕英俊. 自适应阈值图像边缘检测方法[J]. 模式识别与人工智能,2016,29(2):177-184. [9] 杨朝霞,逯峰,李岳生. 图像梯度与散度计算及在边缘提取中的应用[J]. 中山大学学报(自然科学版),2002,41(6):6-9. [10] 杜斌.机器视觉使用HALCON描述与实现[M]. 北京:清华大学出版社,2021:101-102.
更新日期/Last Update:
2024-06-25