[1]付鹏辉,闫晓磊,余捷,等.激光雷达与RGB-D相机融合的SLAM建图[J].福建理工大学学报,2024,22(01):58-64.[doi:10.3969/j.issn.2097-3853.2024.01.009]
 FU Penghui,YAN Xiaolei,YU Jie,et al.SLAM mapping based on fusion of LiDAR and RGB-D camera[J].Journal of Fujian University of Technology;,2024,22(01):58-64.[doi:10.3969/j.issn.2097-3853.2024.01.009]
点击复制

激光雷达与RGB-D相机融合的SLAM建图()
分享到:

《福建理工大学学报》[ISSN:2097-3853/CN:35-1351/Z]

卷:
第22卷
期数:
2024年01期
页码:
58-64
栏目:
出版日期:
2024-02-25

文章信息/Info

Title:
SLAM mapping based on fusion of LiDAR and RGB-D camera
作者:
付鹏辉闫晓磊余捷于廷海叶盛
(福建理工大学)福建省汽车电子与电驱动技术重点实验室
Author(s):
FU Penghui YAN Xiaolei YU Jie YU Tinghai YE Sheng
Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive Technology
关键词:
激光雷达RGB-D相机ORB-SLAM2算法同步定位与建图多传感器融合
Keywords:
LiDAR RGB-D cameraORB-SLAM2 algorithm SLAM multi-sensor fusion
分类号:
TP242.6
DOI:
10.3969/j.issn.2097-3853.2024.01.009
文献标志码:
A
摘要:
对二维激光雷达与RGB?D 相机联合标定,采用改进的ORB?SLAM2 算法实现稠密的点云地图、八叉树地图、栅格地图的构建。提出了一种将Cartographer 算法与改进的ORB?SLAM2 算法融合建图的改进算法。实验结果表明,相比传统的ORB?SLAM2 算法,改进的融合算法在建图过程中障碍物的识别率达到了96.8%,绝对位姿误差减小了53.2%,提高了建图的精确性和鲁棒性。
Abstract:
For the joint calibration of 2D LiDAR and RGB-D camera, the improved ORB-SLAM2 algorithm was used to construct dense point cloud map, octree map and raster map. An improved mapping algorithm combining Cartographer algorithm with improved ORB-SLAM2 algorithm is proposed. The experimental results show that compared with the traditional ORB-SLAM2 algorithm, the new fusion algorithm can achieve 96.8% obstacle recognition rate and reduce the absolute pose error by 53.2%, which improves the accuracy and robustness of map construction.

参考文献/References:

[1] QUERALTA J P,YUHONG F,SALOMA A L. FPGA-based architecture for a low-cost 3D lidar design and implementation from multiple rotating 2D lidars with ROS[C]∥2019 IEEE SENSORS. Montreal,QC,Canada: IEEE,2019:1-4.[2] XIA T,SHEN X. Research on parameter adjustment method of cartographer algorithm[C]∥2022 IEEE 6th Advanced Information Technology,Electronic and Automation Control Conference (IAEAC). Beijing,China: IEEE,2022:1292-1297.[3] ZHANG S S,ZHENG L Y,TAO W B. Survey and evaluation of RGBD SLAM[J]. IEEE Access,2021,9:21367-21387.[4] MUR-ARTAL R,TARDOS J D. ORBSLAM2:an open-source SLAM system for monocular,stereo,and RGBD cameras[J]. IEEE Transactions on Robotics,2017,33(5):1255-1262.[5] LIU C,ZHANG G J,RONG Y M,et al. Hybrid metric-feature mapping based on camera and Lidar sensor fusion[J]. Measurement,2023,207:112411.[6] HOU X,SHI H,QU Y H,et al. A fusion method for 2D LiDAR and RGBD camera depth image without calibration[C]∥SUN F,LI J,LIU H,et al. International Conference on Cognitive Computation and Systems. Singapore:Springer,2023:89-101.[7] PARK K,KIM S,SOHN K. High-precision depth estimation using uncalibrated LiDAR and stereo fusion[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(1):321-335.[8] GRISETTI G,STACHNISS C,BURGARD W. Improved techniques for grid mapping with Rao-blackwellized particle filters[J]. IEEE Transactions on Robotics,2022,23(1):34-46.[9] 韩彦峰,唐超超,肖科. 基于改进ORBSLAM2算法的RGBD稠密地图构建[J]. 湖南大学学报(自然科学版),2023,50(2):52-62.[10] 罗亮,谈莉斌,余晓流,等. 一种融合二维激光雷达和RGBD相机的移动机器人建图方法研究[J]. 制造业自动化,2023,45(4):137-140,190.

更新日期/Last Update: 2024-02-25