参考文献/References:
[1] 黄彤镔,黄河清,李震,等. 基于YOLOv5改进模型的柑橘果实识别方法[J]. 华中农业大学学报,2022,41(4):170-177.[2] 王海楠,弋景刚,张秀花. 番茄采摘机器人识别与定位技术研究进展[J]. 中国农机化学报,2020,41(5):188-196.[3] 张文静,赵性祥,丁睿柔,等. 基于Faster R-CNN算法的番茄识别检测方法[J]. 山东农业大学学报(自然科学版),2021,52(4):624-630.[4] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [5] 成伟,张文爱,冯青春,等.基于改进YOLOv3的温室番茄果实识别估产方法[J].中国农机化学报,2021,42(4):176-182.DOI:10.13733/j.jcam.issn.2095-5553.2021.04.25.[6] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2018-04-08].https:∥arxiv.org/abs/1804.02767. [7] WANG J Q,CHEN K,XU R,et al. CARAFE:content-aware ReAssembly of FEatures[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,Korea (South): IEEE,2019:3007-3016. [8] YANG L, ZHANG R Y, Li L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]∥International Conference on Machine Learning, 2021: 11863-11874. [9] GEVORGYAN Z.SIoU loss: More powerful learning for bounding box regression[J]. Springer International Publishing,2016:21-37. [10] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot MultiBox detector[M]∥Computer VisionECCV 2016. Cham:Springer International Publishing,2016:21-37.
相似文献/References:
[1]喻露,戴甜杰,余丽华.基于改进YOLOv5的道路病害智能检测[J].福建理工大学学报,2023,21(04):332.[doi:10.3969/j.issn.1672-4348.2023.04.005]
YU Lu,DAI Tianjie,YU Lihua.Automatic detection of pavement defect based on improved YOLOv5 algorithm[J].Journal of Fujian University of Technology;,2023,21(06):332.[doi:10.3969/j.issn.1672-4348.2023.04.005]